A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence

被引:4
|
作者
Wucherpfennig, Julian [1 ]
Kachi, Aya [2 ]
Bormann, Nils-Christian [3 ]
Hunziker, Philipp [4 ,5 ]
机构
[1] Hertie Sch, Ctr Int Secur, Friedrichstr 180, D-10117 Berlin, Germany
[2] Univ Basel, Fac Business & Econ, Peter Merian Weg 6, CH-4052 Basel, Switzerland
[3] Witten Herdecke Univ, Dept Philosophy Polit & Econ, Alfred Herrhausen Str 50, D-58448 Witten, Germany
[4] Northeastern Univ, Network Sci Inst, 177 Huntington Ave, Boston, MA 02115 USA
[5] Google, Mountain View, CA 94043 USA
关键词
spatial autocorrelation; temporal autocorrelation; simultaneity; discrete choice models; pseudo maximum likelihood;
D O I
10.1017/pan.2020.54
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.
引用
收藏
页码:570 / 576
页数:7
相关论文
共 50 条
  • [1] Dynamic spatio-temporal models for spatial data
    Hefley, Trevor J.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Russell, Robin E.
    Walsh, Daniel P.
    SPATIAL STATISTICS, 2017, 20 : 206 - 220
  • [2] Spatial autoregression and related spatio-temporal models
    Ma, CS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 88 (01) : 152 - 162
  • [3] Trimmed Spatio-Temporal Variogram Estimator
    Garcia-Perez, Alfonso
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 174 - 179
  • [4] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 7 : 39 - 55
  • [5] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 4 : 33 - 49
  • [6] Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA
    Sani, Asrul
    Abapihi, Bahriddin
    Mukhsar
    Tosepu, Ramadhan
    Usman, Ida
    Rahman, Gusti Arviani
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06): : 939 - 951
  • [7] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433
  • [8] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Johan Lindström
    Adam A. Szpiro
    Paul D. Sampson
    Assaf P. Oron
    Mark Richards
    Tim V. Larson
    Lianne Sheppard
    Environmental and Ecological Statistics, 2014, 21 : 411 - 433
  • [9] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    SORT, 2011, 35 (02): : 165 - 178
  • [10] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178