Deep representation learning improves prediction of LacI-mediated transcriptional repression

被引:10
|
作者
Garruss, Alexander S. [1 ,2 ,3 ]
Collins, Katherine M. [2 ,4 ]
Church, George M. [1 ,2 ,3 ]
机构
[1] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Harvard Med Sch, Dept Biomed Informat, Program Bioinformat & Integrat Genom, Boston, MA 02115 USA
[4] MIT, Dept Brain & Cognit Sci, Boston, MA 02139 USA
关键词
machine learning; lac repressor; deep representation learning; FITNESS LANDSCAPE; ESCHERICHIA-COLI; DNA-BINDING; PROTEIN; DISSOCIATION; SEQUENCE; DESIGN;
D O I
10.1073/pnas.2022838118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent progress in DNA synthesis and sequencing technology has enabled systematic studies of protein function at a massive scale. We explore a deep mutational scanning study that measured the transcriptional repression function of 43,669 variants of the Escherichia coli LacI protein. We analyze structural and evolutionary aspects that relate to how the function of this protein is maintained, including an in-depth look at the C-terminal domain. We develop a deep neural network to predict transcriptional repression mediated by the lac repressor of Escherichia coli using experimental measurements of variant function. When measured across 10 separate training and validation splits using 5,009 single mutations of the lac repressor, our best-performing model achieved a median Pearson correlation of 0.79, exceeding any previous model. We demonstrate that deep representation learning approaches, first trained in an unsupervised manner across millions of diverse proteins, can be fine-tuned in a supervised fashion using lac repressor experimental datasets to more effectively predict a variant's effect on repression. These findings suggest a deep representation learning model may improve the prediction of other important properties of proteins.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep learning methods for molecular representation and property prediction
    Li, Zhen
    Jiang, Mingjian
    Wang, Shuang
    Zhang, Shugang
    DRUG DISCOVERY TODAY, 2022, 27 (12)
  • [2] DeepHealth: Deep Representation Learning with Autoencoders for Healthcare Prediction
    Xu, Wen
    He, Jing
    Shu, Yanfeng
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 42 - 49
  • [3] Deep learning with multimodal representation for pancancer prognosis prediction
    Cheerla, Anika
    Gevaert, Olivier
    BIOINFORMATICS, 2019, 35 (14) : I446 - I454
  • [4] Deep representation learning for human motion prediction and classification
    Butepage, Judith
    Black, Michael J.
    Kragic, Danica
    Kjellstrom, Hedvig
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1591 - 1599
  • [5] Anticancer peptides prediction with deep representation learning features
    Lv, Zhibin
    Cui, Feifei
    Zou, Quan
    Zhang, Lichao
    Xu, Lei
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [6] Prediction of drug efficacy from transcriptional profiles with deep learning
    Jie Zhu
    Jingxiang Wang
    Xin Wang
    Mingjing Gao
    Bingbing Guo
    Miaomiao Gao
    Jiarui Liu
    Yanqiu Yu
    Liang Wang
    Weikaixin Kong
    Yongpan An
    Zurui Liu
    Xinpei Sun
    Zhuo Huang
    Hong Zhou
    Ning Zhang
    Ruimao Zheng
    Zhengwei Xie
    Nature Biotechnology, 2021, 39 : 1444 - 1452
  • [7] Prediction of drug efficacy from transcriptional profiles with deep learning
    Zhu, Jie
    Wang, Jingxiang
    Wang, Xin
    Gao, Mingjing
    Guo, Bingbing
    Gao, Miaomiao
    Liu, Jiarui
    Yu, Yanqiu
    Wang, Liang
    Kong, Weikaixin
    An, Yongpan
    Liu, Zurui
    Sun, Xinpei
    Huang, Zhuo
    Zhou, Hong
    Zhang, Ning
    Zheng, Ruimao
    Xie, Zhengwei
    NATURE BIOTECHNOLOGY, 2021, 39 (11) : 1444 - +
  • [8] Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression
    Radzisheuskaya, Aliaksandra
    Shlyueva, Daria
    Muller, Iris
    Helin, Kristian
    NUCLEIC ACIDS RESEARCH, 2016, 44 (18)
  • [9] Special issue on deep interpretation of deep learning: prediction, representation, modeling and utilization
    Nian Zhang
    Jian Wang
    Leszek Rutkowski
    Neural Computing and Applications, 2023, 35 : 9947 - 9949
  • [10] Special issue on deep interpretation of deep learning: prediction, representation, modeling and utilization
    Zhang, Nian
    Wang, Jian
    Rutkowski, Leszek
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14): : 9947 - 9949