Numerical and Experimental Investigation of the Asymmetric Humidification and Dynamic Temperature in Proton Exchange Membrane Fuel Cell

被引:6
|
作者
Liu, Y. [1 ]
Bai, S. [1 ]
Wei, P. [3 ]
Pei, P. [2 ]
Yao, S. [1 ]
Sun, H. [4 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Machine Elect & Vehicle Engn, Beijing Key Lab Performance Guarantee Urban Rail, Beijing 100044, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Beijing Polytech Coll, Sch Civil Engn & Survey, Beijing 100044, Peoples R China
[4] Beijing Univ Civil Engn & Architecture, Sch Human & Law, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymmetrical Humidification; Computational Fluid Dynamics; Dynamic Temperature; Heat Transfer; Proton Exchange Membrane Fuel Cells; Water Content; RELATIVE-HUMIDITY; ASYMPTOTIC ANALYSIS; WATER MANAGEMENT; PEMFC; PERFORMANCE; MODEL; SIMULATION; PRESSURE; GASES; DROP;
D O I
10.1002/fuce.201900140
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The relative humidity is an important parameter reflecting the performance of proton exchange membrane (PEM) fuel cells, which is often accompanied by changes in heat and temperature. In order to study the different humidification effects on the performance of PEM fuel cells, a temperature and heat transfer (T&HT) model is presented. The innovation of this paper is to study the performance of fuel cell (FC) from the perspective of temperature heat transfer by asymmetric humidification. Firstly, symmetrical humidification experiments are performed at three operating temperatures. After that, a three-dimensional (3D) structure is built using fluent and T&HT model is imported through custom functions. Secondly, the asymmetric humidification experiment is put into practice with 60 degrees C operating temperature. Furthermore, the Taguchi method is used to optimize the performance of fuel cells in the crossover experiment. Finally, the experimental and numerical results are compared by the contours and polarization curves. The results show that T&HT model is in agreement with the experiment, and asymmetric humidification is more reasonable and flexible than symmetrical humidification. When the cathode relative humidity is 50% and the anode relative humidity is 75%, the maximum optimization rate of system efficiency is 17%.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [1] Effects of temperature and humidification levels on the performance of a proton exchange membrane fuel cell
    Chiang, M-S
    Chu, H-S
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2006, 220 (A5) : 435 - 448
  • [2] Linear temperature sweep experimental study on proton exchange membrane fuel cell without external humidification
    Zhao, Sichen
    Wang, Ben
    Xie, Yuhong
    Han, Ming
    Jia, Junbo
    Zhao, Sichen, 1600, Chinese Society for Electrical Engineering (34): : 4528 - 4533
  • [3] Exploration of proton exchange membrane fuel cell performance under dynamic humidification conditions
    Qiu, Chenxi
    Su, Jianbin
    Shi, Lei
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2024, 101 (09)
  • [4] The Impact of Humidification Temperature on a 1 kW Proton Exchange Membrane Fuel Cell Stack
    Sveshnikova, Aleksandra
    Di Marcoberardino, Gioele
    Pirrone, Claudio
    Bischi, Aldo
    Valenti, Gianluca
    Ustinov, Alexander
    Campanari, Stefano
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 1661 - 1667
  • [5] Dynamic investigation on Proton Exchange Membrane fuel cell systems
    Haubrock, J.
    Heideck, G.
    Styczynski, Z.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2486 - +
  • [6] Experimental Investigation of Irreversibility of a Proton Exchange Membrane Fuel Cell
    Khazaee, I.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (02):
  • [7] Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance
    Wang, Xuefeng
    Qin, Yanzhou
    Wu, Shiyu
    Xiang Shangguan
    Zhang, Junfeng
    Yin, Yan
    JOURNAL OF POWER SOURCES, 2020, 457
  • [8] Numerical simulation of dynamic behavior of proton exchange membrane fuel cell
    Hu, Guilin
    Fan, Jianren
    Cen, Kefa
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2006, 57 (11): : 2693 - 2698
  • [9] Study of external humidification method in proton exchange membrane fuel cell
    Hyun, D
    Kim, J
    JOURNAL OF POWER SOURCES, 2004, 126 (1-2) : 98 - 103
  • [10] Revealing the dynamic temperature of the cathode catalyst layer inside proton exchange membrane fuel cell by experimental measurements and numerical analysis
    Wang, Qianqian
    Tang, Fumin
    Li, Xiang
    Zheng, Jim P.
    Hao, Liang
    Cui, Guomin
    Ming, Pingwen
    CHEMICAL ENGINEERING JOURNAL, 2023, 463