Nanophotonic light trapping with patterned transparent conductive oxides

被引:52
|
作者
Vasudev, Alok P. [1 ]
Schuller, Jon A. [1 ]
Brongersma, Mark L. [1 ]
机构
[1] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
来源
OPTICS EXPRESS | 2012年 / 20卷 / 10期
关键词
FILM SOLAR-CELLS; NANOSTRUCTURES; ELECTRODES; ABSORPTION; DEVICES;
D O I
10.1364/OE.20.00A385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Transparent conductive oxides (TCOs) play a crucial role in solar cells by efficiently transmitting sunlight and extracting photo-generated charge. Here, we show how nanophotonics concepts can be used to transform TCO films into effective photon management layers for solar cells. This is accomplished by patterning the TCO layer present on virtually every thin-film solar cell into an array of subwavelength beams that support optical (Mie) resonances. These resonances can be exploited to concentrate randomly polarized sunlight or to effectively couple it to guided and diffracted modes. We first demonstrate these concepts with a model system consisting of a patterned TCO layer on a thin silicon (Si) film and outline a design methodology for high-performance, TCO-based light trapping coatings. We then show that the short circuit current density from a 300 nm thick amorphous silicon (a-Si) cell with an optimized TCO anti-reflection coating can be enhanced from 19.9 mA/cm(2) to 21.1 mA/cm(2), out of a possible 26.0 mA/cm(2), by using an optimized nanobeam array. The key differences and advantages over plasmonic light trapping layers will be discussed. (C) 2012 Optical Society of America
引用
收藏
页码:A385 / A394
页数:10
相关论文
共 50 条
  • [1] Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells
    Dewan, Rahul
    Owen, Jorj I.
    Madzharov, Darin
    Jovanov, Vladislav
    Huepkes, Juergen
    Knipp, Dietmar
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (10)
  • [2] Nanophotonic light trapping theory for photovoltaics
    Yu, Zongfu
    Raman, Aaswath
    Fan, Shanhui
    [J]. RSC Nanoscience and Nanotechnology, 2014, 2014-January (32): : 31 - 61
  • [3] Nanophotonic light trapping in solar cells
    Mokkapati, S.
    Catchpole, K. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
  • [4] Transparent Conductive Oxides Preface
    Grundmann, Marius
    Rahm, Andreas
    von Wenckstern, Holger
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (07): : 1408 - 1408
  • [5] Novel transparent conductive oxides
    Hosono, H
    [J]. PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 31 - 33
  • [6] Infrared transparent conductive oxides
    Johnson, LF
    Moran, MB
    [J]. WINDOW AND DOME TECHNOLOGIES AND MATERIALS VII, 2001, 4375 : 289 - 299
  • [7] Transparent Conductive Oxides for Transparent Electrode Applications
    Minami, Tadatsugu
    [J]. OXIDE SEMICONDUCTORS, 2013, 88 : 159 - 200
  • [8] Design rules of nanostructured transparent conductive electrodes for light trapping in hematite photoanodes
    Eftekharinia, Behrooz
    Moshaii, Ahmad
    Dabirian, Ali
    [J]. JOURNAL OF PHOTONICS FOR ENERGY, 2017, 7 (03):
  • [9] Effective light management of three-dimensionally patterned transparent conductive oxide layers
    Kim, Joondong
    Kim, Mingeon
    Kim, Hyunyub
    Song, Kyuwan
    Lee, Eunsongyi
    Kim, Dong-Wook
    Yun, Ju-Hyung
    Choi, Byung-Ik
    Lee, Sunhwa
    Jeong, Chaehwan
    Yi, Junsin
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (14)
  • [10] Transparent conductive oxides for organic photovoltaics
    Murdoch, G. B.
    Gao, D.
    Greiner, M.
    Mordoukhovski, L.
    Zhang, J.
    Lu, Z. H.
    [J]. OXIDE-BASED MATERIALS AND DEVICES, 2010, 7603