Active Skeleton for Non-rigid Object Detection

被引:112
|
作者
Bai, Xiang [1 ]
Wang, Xinggang [1 ]
Latecki, Longin Jan [2 ]
Liu, Wenyu [1 ]
Tu, Zhuowen [3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] Temple Univ, Philadelphia, PA 19122 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
RECOGNITION; SHAPE;
D O I
10.1109/ICCV.2009.5459188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has the particular advantage in modeling articulation and non-rigid deformation. Given a set of training samples, a tree-union structure is learned on the extracted skeletons to model the variation in configuration. Each branch on the skeleton is associated with a few part-based templates, modeling the object boundary information. We then apply sum-and-max algorithm to perform rapid object detection by matching the skeleton-based active template to the edge map extracted from a test image. The algorithm reports the detection result by a composition of the local maximum responses. Compared with the alternatives on this topic, our algorithm requires less training samples. It is simple, yet efficient and effective. We show encouraging results on two widely used benchmark image sets: the Weizmann horse dataset [7] and the ETHZ dataset [16].
引用
收藏
页码:575 / 582
页数:8
相关论文
共 50 条
  • [1] Non-rigid Object Tracking
    Zhou, Huiyu
    Schaefer, Gerald
    PROCEEDINGS ELMAR-2010, 2010, : 101 - 104
  • [2] Non-rigid Object Segmentation Using Robust Active Shape Models
    Santiago, Carlos
    Nascimento, Jacinto C.
    Marques, Jorge S.
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, AMDO 2014, 2014, 8563 : 160 - 169
  • [3] The effect of rigid and non-rigid motion on object recognition
    Newell, F. N.
    Setti, A.
    PERCEPTION, 2006, 35 : 184 - 185
  • [4] Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)
    Zimmermann, Karel
    Hurych, David
    Svoboda, Tomas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 731 - 743
  • [5] Non-rigid object tracking in complex scenes
    Zhou, Huiyu
    Yuan, Yuan
    Zhang, Yi
    Shi, Chunmei
    PATTERN RECOGNITION LETTERS, 2009, 30 (02) : 98 - 102
  • [6] An efficient algorithm for non-rigid object registration
    Makovetskii, A.
    Voronin, S.
    Kober, V
    Voronin, A.
    COMPUTER OPTICS, 2020, 44 (01) : 67 - 73
  • [7] Hierarchical non-rigid density object analysis
    Morita, S
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 471 - 476
  • [8] Rigid and Non-Rigid Object Image Matching using Deformable Object Image Discrimination
    Feng, Jian
    Won, In-su
    Jeong, Jae-hyup
    Jeong, Dong-seok
    2015 21ST KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION, 2015,
  • [9] Consensus Skeleton for Non-rigid Space-time Registration
    Zheng, Q.
    Sharf, A.
    Tagliasacchi, A.
    Chen, B.
    Zhang, H.
    Sheffer, A.
    Cohen-Or, D.
    COMPUTER GRAPHICS FORUM, 2010, 29 (02) : 635 - 644
  • [10] A new algorithm to rigid and non-rigid object tracking in complex environments
    Mazinan, A. H.
    Amir-Latifi, A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 64 (9-12): : 1643 - 1651