Convergence of the mean and variance of size for a stochastic population model

被引:0
|
作者
Mahdi, S [1 ]
机构
[1] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL,PQ H3C 3J7,CANADA
关键词
D O I
10.1016/S0025-5564(96)00096-X
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this article is to present convergence results for the mean and variance of fish size in a stochastic population model developed by Deriso and Parma. The proofs rely on the concavity property of the transformation of variance over successive generations. (C) Elsevier Science Inc., 1996
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [1] A Stochastic Inventory Model with Mean-Variance Analysis
    Yan Shugang
    Zhou Xizhao
    PROCEEDINGS OF 2009 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE & SYSTEM DYNAMICS, VOL 8, 2009, : 75 - 79
  • [3] Minimum sample size required for estimating the progeny population of mean and variance
    Subramaniam R.
    Sugar Tech, 2005, 7 (2-3) : 96 - 100
  • [4] MEAN AND VARIANCE OF POPULATION-SIZE ASSUMING MARKOVIAN VITAL RATES
    LANGE, K
    HARGROVE, J
    MATHEMATICAL BIOSCIENCES, 1980, 52 (3-4) : 289 - 301
  • [5] The consequences of the variance-mean rescaling effect on effective population size
    Pertoldi, C.
    Bach, L. A.
    Barker, J. S. F.
    Lundberg, P.
    Loeschcke, V.
    OIKOS, 2007, 116 (05) : 769 - 774
  • [6] Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem
    Charles, V.
    Yadavalli, V. S. S.
    Rao, M. C. L.
    Reddy, P. R. S.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [7] Integration of Mean-Variance Model and Stochastic Indicator for Portfolio Optimization
    Lin, Jun-Lin
    Wu, Chien-Hao
    Khomnotai, Laksamee
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES AND ENGINEERING SYSTEMS (ICITES2013), 2014, 293 : 497 - 502
  • [8] Mean-variance convergence around the world
    Eun, Cheol S.
    Lee, Jinsoo
    JOURNAL OF BANKING & FINANCE, 2010, 34 (04) : 856 - 870
  • [9] Comparison Between Mean-Variance and Monotone Mean-Variance Preferences Under Jump Diffusion and Stochastic Factor Model
    Li, Yuchen
    Liang, Zongxia
    Pang, Shunzhi
    MATHEMATICS OF OPERATIONS RESEARCH, 2024,
  • [10] STOCHASTIC-DOMINANCE, MEAN VARIANCE, AND GINI MEAN DIFFERENCE
    YITZHAKI, S
    AMERICAN ECONOMIC REVIEW, 1982, 72 (01): : 178 - 185