LOW-RANK CORRECTION METHODS FOR ALGEBRAIC DOMAIN DECOMPOSITION PRECONDITIONERS

被引:22
|
作者
Li, Ruipeng [1 ]
Saad, Yousef [2 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
[2] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Sherman-Morrison-Woodbury formula; low-rank approximation; distributed sparse linear systems; parallel preconditioner; incomplete LU factorization; Krylov subspace method; domain decomposition; SPARSE LINEAR-SYSTEMS; RECURSIVE MULTILEVEL SOLVER; DEGREE ORDERING ALGORITHM; H-MATRICES; SYMMETRIC-MATRICES; INTEGRAL-OPERATORS; LANCZOS-ALGORITHM; APPROXIMATION; FACTORIZATION; CONVECTION;
D O I
10.1137/16M110486X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman-Morrison-Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisons with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.
引用
收藏
页码:807 / 828
页数:22
相关论文
共 50 条
  • [1] Schur complement-based domain decomposition preconditioners with low-rank corrections
    Li, Ruipeng
    Xi, Yuanzhe
    Saad, Yousef
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (04) : 706 - 729
  • [2] On the Use of Block Low Rank Preconditioners for Primal Domain Decomposition Methods
    Bovet, Christophe
    Gauthier, Theodore
    Gosselet, Pierre
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (03)
  • [3] A Low-Rank Direct Solver for Nonconformal Domain Decomposition Methods
    Lu, Jiaqing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (08) : 6663 - 6677
  • [4] Preconditioners for domain decomposition methods
    Juvigny, X
    Ryan, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (8-9) : 1143 - 1155
  • [5] AN ADAPTIVE ALGEBRAIC MULTIGRID ALGORITHM FOR LOW-RANK CANONICAL TENSOR DECOMPOSITION
    De Sterck, Hans
    Miller, Killian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B1 - B24
  • [6] Preconditioners for nonconforming domain decomposition methods
    Rodrigues, JA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 111 (1-2) : 227 - 237
  • [7] Preconditioners for nonconforming domain decomposition methods
    Rodrigues, José Alberto
    Journal of Computational and Applied Mathematics, 1999, 111 (01): : 227 - 237
  • [8] Low-rank updates of balanced incomplete factorization preconditioners
    J. Cerdán
    J. Marín
    J. Mas
    Numerical Algorithms, 2017, 74 : 337 - 370
  • [9] DIVIDE AND CONQUER LOW-RANK PRECONDITIONERS FOR SYMMETRIC MATRICES
    Li, Ruipeng
    Saad, Yousef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04): : A2069 - A2095
  • [10] Low-rank updates of balanced incomplete factorization preconditioners
    Cerdan, J.
    Marin, J.
    Mas, J.
    NUMERICAL ALGORITHMS, 2017, 74 (02) : 337 - 370