On the dissipative extended Kawahara solitons and cnoidal waves in a collisional plasma: Novel analytical and numerical solutions

被引:29
|
作者
El-Tantawy, S. A. [1 ,2 ]
Salas, Alvaro H. [3 ]
Alharthi, M. R. [4 ]
机构
[1] Port Said Univ, Fac Sci, Dept Phys, Port Said 42521, Egypt
[2] Al Baha Univ, Fac Sci & Arts, Dept Phys, Res Ctr Phys RCP, Al Mikhwah, Saudi Arabia
[3] Univ Nacl Colombia, Dept Math, FIZMAKO Res Grp, Bogota, Colombia
[4] Taif Univ, Dept Math & Stat, Coll Sci, POB 11099, At Taif 21944, Saudi Arabia
关键词
TANH-FUNCTION METHOD; SOLITARY WAVE; EQUATION;
D O I
10.1063/5.0061823
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Two novel analytical solutions to the damped Gardner Kawahara equation and its related equations are reported. Using a suitable ansatz and with the help of the exact solutions of the undamped Gardner Kawahara equation, two general high-accurate approximate analytical solutions are derived. Moreover, the Crank-Nicolson implicit finite difference method is introduced for analyzing the evolution equation numerically. The comparison between the obtained solutions is examined. All the obtained solutions are able to investigate many types of the dissipative traveling wave solutions such as the dissipative solitary and cnoidal waves. Also, the obtained solutions help many researchers understand the mechanisms underlying a variety of nonlinear phenomena that can propagate in optical fiber, physics of plasmas, fluid mechanics, water tank, oceans, and seas. The obtained solutions could be applied for investigating the characteristics of the dissipative higher-order solitary and cnoidal waves in electronegative plasmas. Numerical results depending on the physical plasma parameters are presented. yPublished under an exclusive license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation
    El-Tantawy, S. A.
    Salas, Alvaro H.
    Alharthi, M. R.
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [2] Dissipative Kawahara ion-acoustic solitary and cnoidal waves in a degenerate magnetorotating plasma
    Alkhateeb, Sadah A.
    Hussain, S.
    Albalawi, Wedad
    El-Tantawy, S. A.
    El-Awady, E. I.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2023, 17 (01):
  • [3] EXPONENTIAL TIME DIFFERENCING SCHEME FOR MODELING THE DISSIPATIVE KAWAHARA SOLITONS IN A TWO-ELECTRONS COLLISIONAL PLASMA
    Aljahdaly, Noufe H.
    Ashi, H. A.
    Wazwaz, Abdul-Majid
    El-Tantawy, S. A.
    ROMANIAN REPORTS IN PHYSICS, 2022, 74 (02)
  • [4] SOLITONS FROM SINE WAVES - ANALYTICAL AND NUMERICAL-METHODS FOR NONINTEGRABLE SOLITARY AND CNOIDAL WAVES
    BOYD, JP
    PHYSICA D, 1986, 21 (2-3): : 227 - 246
  • [5] Simulation Studies on the Dissipative Modified Kawahara Solitons in a Complex Plasma
    Ismaeel, Sherif M. E.
    Wazwaz, Abdul-Majid
    Tag-Eldin, Elsayed
    El-Tantawy, Samir A.
    SYMMETRY-BASEL, 2023, 15 (01):
  • [6] On the analytical approximations to the nonplanar damped Kawahara equation: Cnoidal and solitary waves and their energy
    El-Tantawy, S. A.
    El-Sherif, L. S.
    Bakry, A. M.
    Alhejaili, Weaam
    Wazwaz, Abdul-Majid
    PHYSICS OF FLUIDS, 2022, 34 (11)
  • [7] Magnetosonic cnoidal waves and solitons in a magnetized dusty plasma
    Kaur, Nimardeep
    Singh, Manpreet
    Saini, N. S.
    PHYSICS OF PLASMAS, 2018, 25 (04)
  • [8] On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma
    Alyousef, Haifa A.
    Salas, Alvaro H.
    Matoog, R. T.
    El-Tantawy, S. A.
    PHYSICS OF FLUIDS, 2022, 34 (10)
  • [9] Fast magnetohydrodynamic cnoidal waves and solitons in electron-positron plasma
    Ur-Rehman, Hafeez
    Mahmood, S.
    Kaladze, T.
    Hussain, S.
    AIP ADVANCES, 2018, 8 (01)
  • [10] Solitons, Cnoidal Waves, Snoidal Waves and Other Solutions to Whitham-Broer-Kaup System
    Bhrawy, A. H.
    Abdelkawy, M. A.
    Hilal, E. M.
    Alshaery, A. A.
    Biswas, A.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2119 - 2128