Considering precision of data in reduction of dimensionality and PCA

被引:15
|
作者
Brauner, N
Shacham, M [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel
[2] Tel Aviv Univ, Sch Engn, IL-69978 Tel Aviv, Israel
关键词
collinearity; principal component analysis; signal-to-noise ratio; process monitoring;
D O I
10.1016/S0098-1354(00)00616-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reduction of dimensionality of the data space in process data analysis is considered. A new stepwise collinearity diagnostic (SCD) procedure is presented, which employs indicators based on the estimated signal-to-noise ratio in the data in order to measure the collinearity between the variables. The SCD procedure selects a maximal subset of non-collinear variables and identifies the corresponding collinear subsets of variables. Using SCD, the dimension of the data space is reduced to the dimension of the maximal non-collinear subset. In process monitoring applications, the data associated with the surplus variables can be used for distinguishing between process and sensor failures. Two examples, which demonstrate the advantages of the proposed method over principal component analysis (PCA), are presented. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2603 / 2611
页数:9
相关论文
共 50 条
  • [1] PCA Dimensionality Reduction for Categorical Data
    Denisiuk, Aleksander
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 179 - 186
  • [2] Big Data: A dimensionality Reduction and Attribute Selection using PCA for Diabetic Data bases
    Kumar, S. Santhosh
    [J]. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2015, 6 (02): : 1395 - 1401
  • [3] Feasibility of ANFIS towards multiclass event classification in PFBR considering dimensionality reduction using PCA
    Prusty, Manas Ranjan
    Jayanthi, T.
    Chakraborty, Jaideep
    Velusamy, K.
    [J]. ANNALS OF NUCLEAR ENERGY, 2017, 99 : 311 - 320
  • [4] PCA Dimensionality Reduction Method for Image Classification
    Zhao, Baiting
    Dong, Xiao
    Guo, Yongcun
    Jia, Xiaofen
    Huang, Yourui
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (01) : 347 - 368
  • [5] PCA Dimensionality Reduction Method for Image Classification
    Baiting Zhao
    Xiao Dong
    Yongcun Guo
    Xiaofen Jia
    Yourui Huang
    [J]. Neural Processing Letters, 2022, 54 : 347 - 368
  • [6] Exploratory Data Analytics and PCA-Based Dimensionality Reduction for Improvement in Smart Meter Data Clustering
    Shamim, Gulezar
    Rihan, Mohd
    [J]. IETE JOURNAL OF RESEARCH, 2023, 4 (4159-4168) : 4159 - 4168
  • [7] Dimensionality Reduction of SIFT using PCA for Object Categorization
    Watcharapinchai, Nattachai
    Aramvith, Supavadee
    Siddhichai, Supakorn
    Marukatat, Sanparith
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2008), 2008, : 473 - +
  • [8] SLAM using incremental probabilistic PCA and dimensionality reduction
    Brunskill, E
    Roy, N
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 342 - 347
  • [9] IMPROVING THE DIMENSIONALITY REDUCTION OF PCA USING BIVARIATE COPULAS
    Femmam, Karima
    Femmam, Smain
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 86 (01) : 47 - 64
  • [10] Supervised Discriminative Sparse PCA with Adaptive Neighbors for Dimensionality Reduction
    Shi, Zhenhua
    Wu, Dongrui
    Huang, Jian
    Wang, Yu-Kai
    Lin, Chin-Teng
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,