An adaptive distributed parameter estimation approach in incremental cooperative wireless sensor networks

被引:4
|
作者
Wu, Mou [1 ]
Tan, Liansheng [2 ]
机构
[1] Hubei Univ Sci & Technol, Xianning 437100, Peoples R China
[2] Cent China Normal Univ, Wuhan 430007, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Wireless sensor network; Parameter estimation; Least-mean square algorithm; Spatio-temporal diversity; Target localization; STEADY-STATE ANALYSIS; ALGORITHM; OPTIMIZATION; CONVERGENCE; STRATEGIES; SQUARES;
D O I
10.1016/j.aeue.2017.06.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the distributed estimation problem of in a wireless sensor network (WSN) where the collected observations are used to estimate a deterministic network-wide parameter. We propose an adaptive distributed parameter estimation approach for WSN, named as DI-NLMS, using the incremental least-mean squares (I-LMS) technique and exploiting the spatio-temporal diversity to achieve fast convergence rate and satisfactory steady state performance. In this algorithm, every individual node shares the changes in the surrounding environment with its immediate neighbors such that the information on such changes, that affect convergence rate and steady state performance, can fully characterize the features of the entire network. We deduce the optimal variable step size for I-LMS and give the distributed step size updating strategy. A guideline on how to exploit the spatio-temporal dimensions for LMS-type implementations is outlined and an algorithm is proposed. We derive theoretically the minimal mean square derivation (MSD) for DI-NLMS in steady state. The simulations for derived theoretical results and target localization application confirm the effectiveness and efficiency of the proposed algorithm. (C) 2017 Published by Elsevier GmbH.
引用
收藏
页码:307 / 316
页数:10
相关论文
共 50 条
  • [1] Distributed Incremental Quantization and Estimation for Wireless Sensor Networks
    Zhang, Li
    Zhang, Xian-Da
    68TH IEEE VEHICULAR TECHNOLOGY CONFERENCE, FALL 2008, 2008, : 38 - 42
  • [2] Caching for Distributed Parameter Estimation in Wireless Sensor Networks
    Chennakesavula, Pradeep
    Hong, Y. -W. Peter
    Scaglione, Anna
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [3] Parameter estimation in wireless sensor networks with faulty transducers: A distributed EM approach
    Silva Pereira, Silvana
    Lopez-Valcarce, Roberto
    Pages-Zamora, Alba
    SIGNAL PROCESSING, 2018, 144 : 226 - 237
  • [4] Distributed estimation for adaptive sensor selection in wireless sensor networks
    Mahmoud, Magdi S.
    Hassan Hamid, Matasm M.
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (3-4) : 267 - 281
  • [5] Distributed adaptive quantization and estimation for wireless sensor networks
    Li, Hongbin
    Fang, Jun
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) : 669 - 672
  • [6] Distributed adaptive quantization and estimation for wireless sensor networks
    Li, Hongbin
    2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol III, Pts 1-3, Proceedings, 2007, : 533 - 536
  • [7] Cooperative Information Aggregation for Distributed Estimation in Wireless Sensor Networks
    Tsai, Yuh-Ren
    Chang, Cheng-Ju
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (08) : 3876 - 3888
  • [8] Distributed Estimation with Cooperative Information Aggregation in Wireless Sensor Networks
    Tsai, Yuh-Ren
    Chang, Cheng-Ju
    2009 IEEE 70TH VEHICULAR TECHNOLOGY CONFERENCE FALL, VOLS 1-4, 2009, : 1502 - 1506
  • [9] Acoustic Model Parameter Estimation Using Distributed Incremental Adaptive Networks
    Taheri, Sayed Mostafa
    Nosrati, Hamed
    2015 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2015, : 471 - 476
  • [10] Distributed Linear Parameter Estimation over Wireless Sensor Networks
    Das, Arindam K.
    Mesbahi, Mehran
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2009, 45 (04) : 1293 - 1306