HyperspherE: An Embedding Method for Knowledge Graph Completion Based on Hypersphere

被引:3
|
作者
Dong, Yao [1 ]
Guo, Xiaobo [1 ,2 ]
Xiang, Ji [1 ]
Liu, Kai [1 ]
Tang, Zhihao [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
Knowledge graph embedding; Hypersphere; Link prediction; Instance; Concept; IsA relations;
D O I
10.1007/978-3-030-82136-4_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph completion (KGC) aims to predict missing facts by mining information already present in a knowledge graph (KG). A general solution for KGC task is embedding facts in KG into a low-dimensional vector space. Recently, several embedding models focus on modeling isA relations (i.e., instanceOf and subclassOf), and produce some state-of-the-art performance. However, most of them encode instances as vectors for simplification, which neglects the uncertainty of instances. In this paper, we present a new knowledge graph completion model called HyperspherE to alleviate this problem. Specifically, HyperspherE encodes both instances and concepts as hyperspheres. Relations between instances are encoded as vectors in the same vector space. Afterwards, HyperspherE formulates isA relations by the relative positions between hyperspheres. Experimental results on dataset YAGO39K empirically show that HyperspherE outperforms some existing state-of-the-art baselines, and demonstrate the effectiveness of the penalty term in score function.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 50 条
  • [1] Conformal embedding analysis with local graph Modeling on the unit hypersphere
    Fu, Yun
    Liu, Ming
    Huang, Thomas S.
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3139 - +
  • [2] Knowledge Graph Completion Method Based on Embedding Representation and CNN
    Ma, Yuchen
    Li, Shuqin
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 269 - 273
  • [3] Relation domain and range completion method based on knowledge graph embedding
    Lei J.-P.
    Ouyang D.-T.
    Zhang L.-M.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (01): : 154 - 161
  • [4] A semantic guide-based embedding method for knowledge graph completion
    Zhang, Jinglin
    Shen, Bo
    Wang, Tao
    Zhong, Yu
    EXPERT SYSTEMS, 2024, 41 (08)
  • [5] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [6] Hypersphere guided embedding for masked face recognition
    Li, Kai
    Zhu, Xiaobin
    Chen, Song-Lu
    Chen, Feng
    Yin, Xu-Cheng
    Chen, Lei
    PATTERN RECOGNITION LETTERS, 2023, 174 : 46 - 51
  • [7] SphereFace: Deep Hypersphere Embedding for Face Recognition
    Liu, Weiyang
    Wen, Yandong
    Yu, Zhiding
    Li, Ming
    Raj, Bhiksha
    Song, Le
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6738 - 6746
  • [8] Knowledge graph completion method based on quantum embedding and quaternion interaction enhancement
    Li, Linyu
    Zhang, Xuan
    Jin, Zhi
    Gao, Chen
    Zhu, Rui
    Liang, Yuqin
    Ma, Yubing
    INFORMATION SCIENCES, 2023, 648
  • [9] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224
  • [10] A Method of Plant Leaf Recognition Based on Locally Linear Embedding and Moving Center Hypersphere Classifier
    Liu, Jing
    Zhang, Shanwen
    Liu, Jiandu
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 645 - +