Aerodynamic noise analysis of large horizontal axis wind turbines considering fluid-structure interaction

被引:36
|
作者
Kim, Hogeon [1 ]
Lee, Seunghoon [1 ]
Son, Eunkuk [1 ]
Lee, Seungmin [1 ]
Lee, Soogab [1 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Inst Adv Aerosp Technol, Seoul 151744, South Korea
关键词
Aerodynamic noise; Nonlinear composite beam theory; Nonlinear vortex correction method; Fluid-structure interaction; AIRFOIL;
D O I
10.1016/j.renene.2011.09.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerodynamic noise is one of the most serious barriers in wind energy development. To develop technologies for wind turbine noise reduction and assessment, noise needs to be predicted precisely with special consideration given to blade flexibility. The numerical tool, WINFAS, which can simulate fluid -structure interaction, consists of three parts: the first part, the Unsteady Vortex Lattice Method, analyzes aerodynamics: the second part, the Nonlinear Composite Beam Theory, analyzes structure; and the third part uses a semi-empirical formula to analyze airfoil self-noise and the Lowson's formula to analyze turbulence ingestion noise. In this study, using this numerical tool, the change in the noise strength due to blade flexibility was examined. This research showed that elastic blades decreased broadband noise because pitching motion reduced the angle of attack. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 50 条
  • [1] Fluid-Structure Interaction Modeling of Vertical-Axis Wind Turbines
    Bazilevs, Y.
    Korobenko, A.
    Deng, X.
    Yan, J.
    Kinzel, M.
    Dabiri, J. O.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2014, 81 (08):
  • [2] Fluid-Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine
    Santo, Gilberto
    Peeters, Mathijs
    Van Paepegem, Wim
    Degroote, Joris
    [J]. ENERGIES, 2020, 13 (03)
  • [3] APPROXIMATE AERODYNAMIC ANALYSIS FOR HORIZONTAL AXIS WIND TURBINES
    BEANS, EW
    [J]. JOURNAL OF ENERGY, 1983, 7 (03): : 243 - 249
  • [4] Research on Aeroelasticity of Horizontal Axis Wind Turbines by a Fluid-Structure Coupling Numerical Method
    Wei, Shuhe
    Zhang, Liaojun
    Yan, Yizhi
    [J]. 2009 INTERNATIONAL CONFERENCE ON SUSTAINABLE POWER GENERATION AND SUPPLY, VOLS 1-4, 2009, : 1251 - +
  • [5] AERODYNAMIC PERFORMANCE ANALYSIS OF HORIZONTAL-AXIS WIND TURBINES
    MORCOS, VH
    [J]. RENEWABLE ENERGY, 1994, 4 (05) : 505 - 518
  • [6] Composed Fluid-Structure Interaction Interface for Horizontal Axis Wind Turbine Rotor
    Matijasevic, Dubravko
    Terze, Zdravko
    Vrdoljak, Milan
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (04):
  • [7] Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation
    Santo, G.
    Peeters, M.
    Van Paepegem, W.
    Degroote, J.
    [J]. RENEWABLE ENERGY, 2019, 140 : 212 - 226
  • [8] The influence of dynamic pitching on the aerodynamic performance of large horizontal axis wind turbines
    Yang, Congxin
    Dai, Yi
    Li, Shoutu
    He, Kunyun
    [J]. WIND ENGINEERING, 2024,
  • [9] Numerical simulations of the aerodynamic behavior of large horizontal-axis wind turbines
    Gebhardt, C. G.
    Preidikman, S.
    Massa, J. C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) : 6005 - 6011
  • [10] Fluid-structure interaction analysis of wind turbine aerodynamic loads and aeroelastic responses considering blade and tower flexibility
    Zhang, Dongqin
    Liu, Zhenqing
    Li, Weipeng
    Zhang, Jize
    Cheng, Ling
    Hu, Gang
    [J]. ENGINEERING STRUCTURES, 2024, 301