Robust singular value decomposition analysis of microarray data

被引:94
|
作者
Liu, L
Hawkins, DM
Ghosh, S
Young, SS
机构
[1] Natl Inst Stat Sci, Res Triangle Pk, NC 27709 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[3] GlaxoSmithKline, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1073/pnas.1733249100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In microarray data there are a number of biological samples, each assessed for the level of gene expression for a typically large number of genes. There is a need to examine these data with statistical techniques to help discern possible patterns in the data. Our technique applies a combination of mathematical and statistical methods to progressively take the data set apart so that different aspects can be examined for both general patterns and very specific effects. Unfortunately, these data tables are often corrupted with extreme values (outliers), missing values, and non-normal distributions that preclude standard analysis. We develop a. robust analysis method to address these problems. The benefits of this robust analysis will be both the understanding of large-scale shifts in gene effects and the isolation of particular sample-by-gene effects that might be either unusual interactions or the result of experimental flaws. Our method requires a single pass and does not resort to complex "cleaning" or imputation of the data table before analysis. We illustrate the method with a commercial data set.
引用
收藏
页码:13167 / 13172
页数:6
相关论文
共 50 条
  • [1] SVDMAN - singular value decomposition analysis of microarray data
    Wall, ME
    Dyck, PA
    Brettin, TS
    [J]. BIOINFORMATICS, 2001, 17 (06) : 566 - 568
  • [2] Nonnegative singular value decomposition for microarray data analysis of spermatogenesis
    Liu, Weixiang
    Tang, Aifa
    Ye, Datian
    Ji, Zhen
    [J]. 2008 INTERNATIONAL SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, VOLS 1 AND 2, 2008, : 39 - +
  • [3] ANALYSIS OF THE SINGULAR VALUE DECOMPOSITION AS A TOOL FOR PROCESSING MICROARRAY EXPRESSION DATA
    Higham, Desmond J.
    Kalna, Gabriela
    Vass, J. Keith
    [J]. ALGORITMY 2005: 17TH CONFERENCE ON SCIENTIFIC COMPUTING, PROCEEDINGS, 2005, : 250 - 259
  • [4] Biclustering of microarray data based on singular value decomposition
    Yang, Wen-Hui
    Dai, Dao-Qing
    Yan, Hong
    [J]. EMERGING TECHNOLOGIES IN KNOWLEDGE DISCOVERY AND DATA MINING, 2007, 4819 : 194 - +
  • [5] Analysis and modelling of septic shock microarray data using Singular Value Decomposition
    Allanki, Srinivas
    Dixit, Madhulika
    Thangaraj, Paul
    Sinha, Nandan Kumar
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 70 : 77 - 84
  • [6] ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA
    Zhang, Lingsong
    Shen, Haipeng
    Huang, Jianhua Z.
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (03): : 1540 - 1561
  • [7] Kernel robust singular value decomposition
    Lima Neto, Eufrasio de A.
    Rodrigues, Paulo C.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [8] Background initialization in video data using singular value decomposition and robust principal component analysis
    Gowda, Vishruth B.
    Gopalakrishna, M.T.
    Megha, J.
    Mohankumar, Shilpa
    [J]. International Journal of Computers and Applications, 2023, 45 (09) : 600 - 609
  • [9] Fully Distributed Robust Singular Value Decomposition
    Hegedus, Istvan
    Jelasity, Mark
    Kocsis, Levente
    Benczur, Andras A.
    [J]. 14-TH IEEE INTERNATIONAL CONFERENCE ON PEER-TO-PEER COMPUTING (P2P), 2014,
  • [10] SINGULAR VALUE DECOMPOSITION - APPLICATION TO ANALYSIS OF EXPERIMENTAL-DATA
    HENRY, ER
    HOFRICHTER, J
    [J]. METHODS IN ENZYMOLOGY, 1992, 210 : 129 - 192