Sensor Fault Accommodation for a Plug Flow Reactor using an M-Estimator

被引:2
|
作者
Seth, Gaurav [1 ]
Rangegowda, Pavanraj H. [2 ]
Patwardhan, Sachin C. [1 ]
Bhushan, Mani [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Mumbai 400076, Maharashtra, India
[2] Homi Bhabha Natl Inst, Bhabha Atom Res Ctr, Mumbai 400094, Maharashtra, India
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 07期
关键词
Fault detection; distributed parameter system; M-estimator; STATE ESTIMATION TECHNIQUES;
D O I
10.1016/j.ifacol.2022.07.532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The presence of gross errors in the measurements can lead to biased state estimates when conventional Bayesian estimators are used. This can hamper the model-based monitoring and control schemes that rely on the accurate state estimates. In this work, we have developed a framework for robust estimation of the state profiles for Distributed parameter systems (DPSs), in the presence of biased measurements. The proposed approach uses an M-estimator to identify the faulty sensor. The sensor fault diagnosis is then used to augment the state estimator with an extra state that estimates the drifting sensor bias. The proposed approach has been applied to an Auto-Thermal tubular reactor system. The proposed scheme successfully isolates the biased temperature sensors and includes or removes additional bias states as and when required. The gross errors/biases are estimated and subsequently accommodated to provide accurate estimates of spatial profiles of reactor concentration and temperature. Copyright (C) 2022 The Authors.
引用
收藏
页码:738 / 743
页数:6
相关论文
共 50 条
  • [1] M-ESTIMATOR USING JACKKNIFE PSEUDOVALUES
    CHENG, KF
    SCANDINAVIAN JOURNAL OF STATISTICS, 1991, 18 (01) : 51 - 61
  • [2] Robust MAV State Estimation Using an M-Estimator Augmented Sensor Fusion Graph
    Chen, Derek
    Gao, Grace Xingxin
    PROCEEDINGS OF THE 28TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2015), 2015, : 841 - 848
  • [3] Robust ANMF test using Huber's M-estimator
    Mahot, M.
    Pascal, F.
    Forster, P.
    Ovarlez, J. P.
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 373 - 376
  • [4] Impulsive noise filtering using a Median Redescending M-Estimator
    Mujica-Vargas, Dante
    Gallegos-Funes, Francisco J.
    de Jesus Rubio, Jose
    Pacheco, Jaime
    INTELLIGENT DATA ANALYSIS, 2017, 21 (03) : 739 - 754
  • [5] Ratio Estimators in the Presence of Outliers Using Redescending M-Estimator
    Muhammad Noor-ul-Amin
    Salah-Ud-Din Asghar
    Aamir Sanaullah
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 65 - 70
  • [6] Ratio Estimators in the Presence of Outliers Using Redescending M-Estimator
    Noor-ul-Amin, Muhammad
    Asghar, Salah-Ud-Din
    Sanaullah, Aamir
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) : 65 - 70
  • [7] Robust global motion estimation using a simplified M-estimator approach
    Smolic, A
    Ohm, JR
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 868 - 871
  • [8] Fitting data with errors in all variables using the Huber M-estimator
    Hermey, D
    Watson, GA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04): : 1276 - 1298
  • [9] Robust local polynomial regression using M-estimator with adaptive bandwidth
    Chan, SC
    Zhang, ZG
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3, PROCEEDINGS, 2004, : 333 - 336
  • [10] Image Registration Using Feature Points, Zernike Moments and an M-estimator
    Gillan, Steven
    Agathoklis, Pan
    53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 434 - 437