Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces

被引:465
|
作者
Durand, William J. [1 ]
Peterson, Andrew A. [1 ,3 ]
Studt, Felix [2 ]
Abild-Pedersen, Frank [2 ]
Norskov, Jens K. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA USA
[3] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, Lyngy, Denmark
关键词
Density functional calculations; Catalysis; SINGLE-CRYSTAL ELECTRODES; GAS SHIFT REACTION; AQUEOUS HYDROGENCARBONATE SOLUTION; CARBON-DIOXIDE; HYDROCARBONS; ADSORPTION; CATALYSIS; MECHANISM; SERIES;
D O I
10.1016/j.susc.2011.04.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polycrystalline copper electrocatalysts have been experimentally shown to be capable of reducing CO2 into CH4 and C2H4 with relatively high selectivity, and a mechanism has recently been proposed for this reduction on the fcc(211) surface of copper, which was assumed to be the most active facet. In the current work, we use computational methods to explore the effects of the nanostructure of the copper surface and compare the effects of the fcc(111), fcc(100) and fcc(211) facets of copper on the energetics of the electroreduction of CO2. The calculations performed in this study generally show that the intermediates in CO2 reduction are most stabilized by the (211) facet, followed by the (100) facet, with the (111) surface binding the adsorbates most weakly. This leads to the prediction that the (211) facet is the most active surface among the three in producing CH4 from CO2, as well as the by-products H-2 and CO. HCOOH production may be mildly enhanced on the more close-packed surfaces ((111) and (100)) as compared to the (211) facet, due to a change in mechanism from a carboxyl intermediate to a formate intermediate. The results are compared to published experimental data on these same surfaces: the predicted trends in voltage requirements are consistent between the experimental and computational data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1354 / 1359
页数:6
相关论文
共 50 条
  • [1] Electrochemical Reduction of CO2 at Copper Nanofoams
    Sen, Sujat
    Liu, Dan
    Palmore, G. Tayhas R.
    ACS CATALYSIS, 2014, 4 (09): : 3091 - 3095
  • [2] Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces
    Le, M.
    Ren, M.
    Zhang, Z.
    Sprunger, P. T.
    Kurtz, R. L.
    Flake, J. C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : E45 - E49
  • [3] Electrochemical Reduction of CO2 on Copper Oxidized By Electrochemical Methods
    Giri, Sachin D.
    Sarkar, A.
    Mahajani, Sanjay M.
    Suresh, A. K.
    PHYSICAL AND ANALYTICAL ELECTROCHEMISTRY, ELECTROCATALYSIS, AND PHOTOELECTROCHEMISTRY GENERAL SESSION, 2017, 75 (48): : 19 - 31
  • [4] Electrochemical Reduction of CO2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene
    Huang, Yun
    Handoko, Albertus D.
    Hirunsit, Pussana
    Yeo, Boon Siang
    ACS CATALYSIS, 2017, 7 (03): : 1749 - 1756
  • [5] Deactivation of copper electrode in electrochemical reduction of CO2
    Hori, Y
    Konishi, H
    Futamura, T
    Murata, A
    Koga, O
    Sakurai, H
    Oguma, K
    ELECTROCHIMICA ACTA, 2005, 50 (27) : 5354 - 5369
  • [6] Copper Nanowires for Electrochemical CO2 Reduction Reaction
    Lin, Wuyang
    Ghulam Nabi, Azeem
    Palma, Matteo
    Di Tommaso, Devis
    ACS APPLIED NANO MATERIALS, 2024, 7 (24) : 27883 - 27898
  • [7] Copper modification of pyrite for CO2 electrochemical reduction
    Yang Y.-C.
    Yang Y.-J.
    Liu J.
    Xiong B.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (09): : 1167 - 1174
  • [8] Electrolyte Effects on CO2 Electrochemical Reduction to CO
    Marcandalli, Giulia
    Monteiro, Mariana C. O.
    Goyal, Akansha
    Koper, Marc T. M.
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (14) : 1900 - 1911
  • [9] Surfactant-driven interfacial engineering of copper surfaces for enhanced electrochemical CO2 reduction
    Pandiarajan, Aarthi
    Hemalatha, Gurusamy
    Mahalakshmi, Babu
    Ravichandran, Subbiah
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 978
  • [10] Electrolyte Effects on the Electrochemical Reduction of CO2
    Moura de Salles Pupo, Marilia
    Kortlever, Ruud
    CHEMPHYSCHEM, 2019, 20 (22) : 2926 - 2935