Influence of spiral angle an heat transfer during condensation inside spiralled micro-fin tubes

被引:7
|
作者
Bukasa, JP
Liebenberg, L
Meyer, JP [1 ]
机构
[1] Univ Pretoria, Dept Mech & Aeronaut Engn, ZA-0002 Pretoria, South Africa
[2] Rand Afrikaans Univ, Dept Mech Engn, Auckland, New Zealand
关键词
D O I
10.1080/01457630590959278
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper reports the influence of the spiral angle on the heat transfer performance during condensation inside spiraled micro-fin tubes having constant geometric parameters such as fin height,pitch, shape (apex angle), and fin number, as various papers previously published in this field had not clearly established this influence. Tests were conducted for condensation of R-22, R-134a, and R-407C inside a smooth tube (9.52 mm outer diameter) and three micro-fin tubes with approximately the same diameter and spiral angles of 10 degrees, 18 degrees, and 37 degrees, respectively. Experimental results indicated a heat transfer augmentation with spiral angle increase. A new semi-empirical predictive correlation was developed for the practical design of spiraled micro-fin tubes. The proposed new correlation predicted the majority of experimental results of the present study within a deviation zone of 20 percent.
引用
下载
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [1] Heat transfer performance during condensation inside spiralled micro-fin tubes
    Bukasa, JPM
    Liebenberg, L
    Meyer, JP
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 321 - 328
  • [2] Heat transfer performance during condensation inside horizontal smooth, micro-fin and herringbone tubes
    Lambrechts, Adriaan
    Liebenberg, Leon
    Bergles, Arthur E.
    Meyer, Josua P.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (07): : 691 - 700
  • [3] Evaporation and condensation heat transfer in horizontal micro-fin tubes
    Key Laboratory for Thermal Science and Power Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
    Kung Cheng Je Wu Li Hsueh Pao, 2006, 3 (460-462):
  • [4] Modeling of condensation heat transfer of refrigerant mixture in micro-fin tubes
    Chamra, LM
    Mago, PJ
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (11-12) : 1915 - 1921
  • [5] Modeling of condensation heat transfer of pure refrigerants in micro-fin tubes
    Chamra, LM
    Mago, PJ
    Tan, MO
    Kung, CC
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (07) : 1293 - 1302
  • [6] Experimental study of R134A condensation heat transfer inside the horizontal micro-fin tubes
    Chen, Q
    Amano, RS
    Xin, MD
    HEAT AND MASS TRANSFER, 2005, 41 (09) : 785 - 791
  • [7] Experimental study of R134a condensation heat transfer inside the horizontal micro-fin tubes
    Chen, QH
    Xin, MD
    Amano, RS
    ITHERM 2004, VOL 2, 2004, : 40 - 46
  • [8] Experimental study of R134A condensation heat transfer inside the horizontal micro-fin tubes
    Q. Chen
    R. S. Amano
    M. D. Xin
    Heat and Mass Transfer, 2005, 41 : 785 - 791
  • [9] Flow condensation heat transfer and pressure drop in horizontal micro-fin tubes
    Wu, Xiao-Min
    Wang, Xiao-Liang
    Wang, Wei-Cheng
    Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2003, 25 (04):
  • [10] Evaluation of existing condensation heat transfer models in horizontal micro-fin tubes
    Chamra, LM
    Tan, MO
    Kung, CC
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2004, 28 (06) : 617 - 628