Measure Comparison and Distance Inequalities for Convex Bodies

被引:0
|
作者
Koldobsky, Alexander [1 ]
Paouris, Grigoris [2 ]
Zvavitch, Artem [3 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Texas A&M Univ, Dept Math, 400 Bizzell St, College Stn, TX 77843 USA
[3] Kent State Univ, Dept Math Sci, 800 E Summit St, Kent, OH 44240 USA
基金
美国国家科学基金会;
关键词
Convex bodies; hyperplane sections; measure; Busemann-Petty problerm; intersection body; BUSEMANN-PETTY PROBLEM; LINEAR FUNCTIONALS; SECTIONS; VOLUMES; RATIOS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new versions of the isomorphic Busemann-Petty problem for two different measures and show how these results can be used to recover slicing and distance inequalities. We also prove a sharp upper estimate for the outer volume ratio distance from an arbitrary convex body to the unit balls of subspaces of L-p.
引用
收藏
页码:391 / 407
页数:17
相关论文
共 50 条