Fluence dependant formation of β-SiC by ion implantation and thermal annealing

被引:6
|
作者
Poudel, P. R. [1 ]
Rout, B. [1 ]
Diercks, D. R. [2 ]
Strzhemechny, Y. M. [3 ]
Mcdaniel, F. D. [1 ]
机构
[1] Univ N Texas, Dept Phys, Ion Beam Modificat & Anal Lab, Denton, TX 76203 USA
[2] Univ N Texas, Ctr Adv Res & Technol, Denton, TX 76207 USA
[3] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA
来源
关键词
LIGHT-EMITTING-DIODES; SILICON-CARBIDE; BEAM SYNTHESIS; X-RAY; CARBON; LAYERS; SPECTROSCOPY; CRYSTALLINE; EMISSION; GROWTH;
D O I
10.1007/s00339-010-6099-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The beta-SiC nanocrystals were synthesized by the implantation of carbon ions (C-) into silicon followed by high-temperature annealing. The carbon fluences of 1x10(17), 2x10(17), 5x10(17), and 8x10(17) atoms/cm(2) were implanted at an ion energy of 65 keV. It was observed that the average size of beta-SiC crystals decreased and the amount of beta-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100 A degrees C for 1 h. However, it was observed that the amount of beta-SiC linearly increased with the implanted fluences up to 5x10(17) atoms/cm(2). Above this fluence the amount of beta-SiC appears to saturate. The Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, and X-ray diffraction (XRD) techniques were used to characterize the samples.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [1] Fluence dependant formation of β-SiC by ion implantation and thermal annealing
    P. R. Poudel
    B. Rout
    D. R. Diercks
    Y. M. Strzhemechny
    F. D. Mcdaniel
    Applied Physics A, 2011, 104 : 183 - 188
  • [2] Effects of Thermal Annealing on the Formation of Buried β-SiC by Ion Implantation
    Poudel, P. R.
    Rout, B.
    Diercks, D. R.
    Paramo, J. A.
    Strzhemechny, Y. M.
    Mcdaniel, F. D.
    JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (09) : 1998 - 2003
  • [3] Effects of Thermal Annealing on the Formation of Buried β-SiC by Ion Implantation
    P. R. Poudel
    B. Rout
    D. R. Diercks
    J. A. Paramo
    Y. M. Strzhemechny
    F. D. Mcdaniel
    Journal of Electronic Materials, 2011, 40 : 1998 - 2003
  • [4] Nanocrystal formation in SiC by Ge ion implantation and subsequent thermal annealing
    Schubert, C
    Kaiser, U
    Hedler, A
    Wesch, W
    Gorelik, T
    Glatzel, U
    Kräusslich, J
    Wunderlich, B
    Hess, G
    Goetz, K
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (03) : 1520 - 1524
  • [5] Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing
    Dobrovolskiy, S.
    Yakshin, A. E.
    Tichelaar, F. D.
    Verhoeven, J.
    Louis, E.
    Bijkerk, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (06): : 560 - 567
  • [6] Gold nanocluster formation in silicate glasses by low fluence ion implantation and annealing
    Battaglin, G
    BoscoloBoscoletto, A
    Mazzoldi, P
    Meneghini, C
    Arnold, GW
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1996, 116 (1-4): : 527 - 530
  • [7] Formation of microvoids in MgO by helium ion implantation and thermal annealing
    Delft Univ of Technology, Delft, Netherlands
    Nucl Instrum Methods Phys Res Sect B, 1-4 (768-772):
  • [8] The formation of microvoids in MgO by helium ion implantation and thermal annealing
    van Veen, A
    Schut, H
    Fedorov, AV
    Labohm, F
    Neeft, EAC
    Konings, RJM
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 148 (1-4): : 768 - 772
  • [9] FORMATION OF AS PRECIPITATES IN GAAS BY ION-IMPLANTATION AND THERMAL ANNEALING
    CLAVERIE, A
    NAMAVAR, F
    LILIENTALWEBER, Z
    APPLIED PHYSICS LETTERS, 1993, 62 (11) : 1271 - 1273
  • [10] Formation of Ge nanoparticles in SiOxNy by ion implantation and thermal annealing
    Mirzaei, S.
    Kremer, F.
    Sprouster, D. J.
    Araujo, L. L.
    Feng, R.
    Glover, C. J.
    Ridgway, M. C.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (15)