On the p-essential normality of principal submodules of the Bergman module on strongly pseudoconvex domains

被引:4
|
作者
Douglas, Ronald G. [1 ]
Guo, Kunyu [2 ]
Wang, Yi [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Chongqing Univ, Dept Math, Chongqing 400044, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Arveson-Douglas conjecture; Complex harmonic analysis; Bergman spaces; Strongly pseudoconvex domains; HANKEL-OPERATORS;
D O I
10.1016/j.aim.2022.108546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that under a mild condition, a principal submodule of the Bergman module on a bounded strongly pseudoconvex domain with smooth boundary in C-n is p -essentially normal for all p > n. This improves a previous result by the first author and K. Wang, in which it was shown that any polynomial-generated principal submodule of the Bergman module on the unit ball B-n is p -essentially normal for all p > n. As a consequence, we show that the submodule of L-a(2)(B-n) consisting of functions vanishing on an analytic subset of pure codimension 1 is p -essentially normal for all p > n. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:41
相关论文
共 30 条