Maximum likelihood estimation from fuzzy data using the EM algorithm

被引:89
|
作者
Denoeux, Thierry [1 ]
机构
[1] Univ Technol Compiegne, CNRS, UMR Heudiasyc 6599, F-60205 Compiegne, France
关键词
Statistics; Fuzzy data analysis; Estimation; Maximum likelihood principle; Regression; Mixture models; RANDOM-VARIABLES; MIXTURE MODEL; REGRESSION;
D O I
10.1016/j.fss.2011.05.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A method is proposed for estimating the parameters in a parametric statistical model when the observations are fuzzy and are assumed to be related to underlying crisp realizations of a random sample. This method is based on maximizing the observed-data likelihood defined as the probability of the fuzzy data. It is shown that the EM algorithm may be used for that purpose, which makes it possible to solve a wide range of statistical problems involving fuzzy data. This approach, called the fuzzy EM (FEM) method, is illustrated using three classical problems: normal mean and variance estimation from a fuzzy sample, multiple linear regression with crisp inputs and fuzzy outputs, and univariate finite normal mixture estimation from fuzzy data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 91
页数:20
相关论文
共 50 条
  • [1] Maximum Likelihood from Evidential Data: An Extension of the EM Algorithm
    Denoeux, Thierry
    [J]. COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 181 - 188
  • [2] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [3] Maximum Log Likelihood Estimation using EM Algorithm and Partition Maximum Log Likelihood Estimation for Mixtures of Generalized Lambda Distributions
    Su, Steve
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2011, 10 (02) : 599 - 606
  • [4] Maximum likelihood estimation for the distribution of fuzzy data
    Wang, Dabuxilatu
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1184 - 1189
  • [5] Maximum likelihood estimation of varma models using a state-space em algorithm
    Metaxoglou, Konstantinos
    Smith, Aaron
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (05) : 666 - 685
  • [7] Maximum Likelihood Parameter Estimation for GO Distribution via EM Algorithm
    Zhou, Xin
    Jiang, Ju
    Wang, Congqing
    [J]. 2013 10TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2013, : 89 - 93
  • [8] Maximum likelihood and the graphical EM algorithm
    Latombe, Guillaume
    Granger, Eric
    Dilkes, Fred A.
    [J]. 2006 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-5, 2006, : 1023 - +
  • [9] MAXIMUM-LIKELIHOOD NOISE CANCELLATION USING THE EM ALGORITHM
    FEDER, M
    OPPENHEIM, AV
    WEINSTEIN, E
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (02): : 204 - 216
  • [10] MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM
    BOCK, RD
    AITKIN, M
    [J]. PSYCHOMETRIKA, 1981, 46 (04) : 443 - 459