Dislocation nucleation from damaged grain boundaries in face centered cubic metals - An atomistic study

被引:8
|
作者
Chandra, S. [1 ]
Samal, M. K. [2 ,3 ]
Chavan, V. M. [4 ]
机构
[1] Homi Bhabha Natl Inst, Mumbai 400084, Maharashtra, India
[2] Bhabha Atom Res Ctr, Reactor Safety Div, Mumbai 400085, Maharashtra, India
[3] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400084, Maharashtra, India
[4] Bhabha Atom Res Ctr, Refueling Technol Div, Mumbai 400085, Maharashtra, India
来源
MATERIALIA | 2019年 / 8卷
基金
美国安德鲁·梅隆基金会;
关键词
Molecular dynamics; Grain boundaries; Void; Dislocations; STRUCTURE-ENERGY CORRELATION; FCC METALS; DUCTILE FRACTURE; CRYSTAL PLASTICITY; SLIP TRANSMISSION; NANOVOID GROWTH; SYMMETRIC TILT; VOID GROWTH; IN-SITU; DEFORMATION;
D O I
10.1016/j.mtla.2019.100497
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Towards unraveling the underlying behavior of grain boundaries containing a pre-existing void, we here present a computational approach to quantify the resistance of voided grain boundaries to plasticity evolution in face centered cubic metals. This is realized by conducing an atomistic modeling survey on 104 distinct grain boundaries in both Ni and Cu bicrystals subjected to uniaxial tension perpendicular to the interface plane. Within the framework of embedded-atom method, molecular dynamics simulations are performed to evaluate the critical stress and energy barrier required for dislocation nucleation from the voided interfaces. The resulting set of data is then analyzed to gage correlations between the strength of voided boundaries and common grain boundary descriptors in an effort to inform plasticity models at higher length scales. It is found that macroscopic grain boundary descriptors fail to uniquely predict the strength of damaged grain boundaries, thus suggesting some other mechanistic rationale for the role of such boundaries in governing dislocation nucleation under uniaxial tension in metals. Simulations indicate a direct correlation between the strength and ability of a grain boundary to store energy during tensile deformation. Additionally, it is also observed that a simple statistical distribution can represent dislocation nucleation stresses in face centered cubic metals. These correlations can definitely benefit the materials community in formulating rules for multi-scale materials modeling.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Dislocation nucleation from symmetric tilt grain boundaries in body-centered cubic vanadium
    Xu, Shuozhi
    Su, Yanqing
    PHYSICS LETTERS A, 2018, 382 (17) : 1185 - 1189
  • [2] Structure and stability of Σ3 grain boundaries in face centered cubic metals
    Wang, J.
    Li, N.
    Misra, A.
    PHILOSOPHICAL MAGAZINE, 2013, 93 (04) : 315 - 327
  • [3] Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals
    Wang, J.
    Anderoglu, O.
    Hirth, J. P.
    Misra, A.
    Zhang, X.
    APPLIED PHYSICS LETTERS, 2009, 95 (02)
  • [4] The reciprocal relationship of orientation dependence of the dislocation boundaries in body-centered cubic metals and face-centered cubic metals
    Wang, Shan
    Chen, Chang
    Jia, Yanlin
    Wang, Mingpu
    Xia, Fuzhong
    Li, Zhou
    Wang, Zhixing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 619 : 107 - 111
  • [5] Stress-assisted grain-rotation-induced dislocation emission from grain boundaries in nanocrystalline face-centered-cubic metals
    Li, Jianjun
    Chen, Shaohua
    Weng, George J.
    Liu, Chunhui
    PHILOSOPHICAL MAGAZINE LETTERS, 2019, 99 (12) : 466 - 478
  • [6] A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals
    Zhang, Liang
    Lu, Cheng
    Tieu, Kiet
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 118 : 180 - 191
  • [7] Stable nanofacets in [111] tilt grain boundaries of face-centered cubic metals
    Brink, Tobias
    Langenohl, Lena
    Pemma, Swetha
    Liebscher, Christian H.
    Dehm, Gerhard
    PHYSICAL REVIEW MATERIALS, 2024, 8 (06):
  • [8] DISLOCATION BLOCKING IN FACE-CENTERED-CUBIC METALS
    KRAMER, IR
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1959, 215 (02): : 226 - 230
  • [9] Stress dependence of the dislocation core structure and loop nucleation for face-centered-cubic metals
    Pi, Z. P.
    Fang, Q. H.
    Jiang, C.
    Liu, B.
    Liu, Y.
    Wen, P. H.
    Liu, Y. W.
    ACTA MATERIALIA, 2017, 131 : 380 - 390
  • [10] Atomistic simulations of cross-slip nucleation at screw dislocation intersections in face-centered cubic nickel
    Rao, S. I.
    Dimiduk, D. M.
    El-Awady, J. A.
    Parthasarathy, T. A.
    Uchic, M. D.
    Woodward, C.
    PHILOSOPHICAL MAGAZINE, 2009, 89 (34-36) : 3351 - 3369