An Online Calculator for Quantum Computing Operations Based on Geometric Algebra

被引:7
|
作者
Alves, R. [1 ]
Hildenbrand, D. [2 ]
Hrdina, J. [3 ]
Lavor, C. [4 ]
机构
[1] Fed Univ ABC CMCC UFABC, BR-09606070 Sao Bernardo, SP, Brazil
[2] Univ Technol Darmstadt, D-64277 Darmstadt, Germany
[3] Brno Univ Technol, Brno 61669, Czech Republic
[4] Univ Campinas IMECC Unicamp, BR-13081970 Campinas, Brazil
基金
巴西圣保罗研究基金会;
关键词
GAALOPWeb; Qubits; Quantum computing; Geometric algebra;
D O I
10.1007/s00006-021-01185-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present Geometric Algebra as a powerful language to describe quantum operations using its geometric intuitiveness. Using the web-based GAALOPWeb, an online geometric algebra algorithm optimizer for computing with qubits, we describe new formulations for the NOT operation, as well as a strategy to describe the Z gate and especially the Hadamard operation both for one and multiple qubits.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] An Online Calculator for Quantum Computing Operations Based on Geometric Algebra
    R. Alves
    D. Hildenbrand
    J. Hrdina
    C. Lavor
    Advances in Applied Clifford Algebras, 2022, 32
  • [2] An Online Calculator for Qubits Based on Geometric Algebra
    Hildenbrand, D.
    Steinmetz, C.
    Alves, R.
    Hrdina, J.
    Lavor, C.
    ADVANCES IN COMPUTER GRAPHICS, CGI 2020, 2020, 12221 : 526 - 537
  • [3] Expressing the operations of quantum computing in multiparticle geometric algebra
    Somaroo, Shyamal S.
    Cory, David G.
    Havel, Timothy F.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 240 (1-2): : 1 - 7
  • [4] Expressing the operations of quantum computing in multiparticle geometric algebra
    Somaroo, SS
    Cory, DG
    Havel, TF
    PHYSICS LETTERS A, 1998, 240 (1-2) : 1 - 7
  • [5] A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing
    Cafaro, Carlo
    Mancini, Stefano
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 493 - 519
  • [6] A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing
    Carlo Cafaro
    Stefano Mancini
    Advances in Applied Clifford Algebras, 2011, 21 : 493 - 519
  • [7] Geometric Algebra Quantum Convolutional Neural Network A model using geometric (Clifford) algebras and quantum computing
    Altamirano-Escobedo, Guillermo
    Bayro-Corrochano, Eduardo
    IEEE SIGNAL PROCESSING MAGAZINE, 2024, 41 (02) : 75 - 85
  • [8] Geometric Algebra for Subspace Operations
    T. A. Bouma
    L. Dorst
    H. G. J. Pijls
    Acta Applicandae Mathematica, 2002, 73 : 285 - 300
  • [9] Geometric algebra for subspace operations
    Bouma, TA
    Dorst, L
    Pijls, HGJ
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (03) : 285 - 300
  • [10] Quantum Computing Based on Quantum Bit Algebra QBA
    Hrdina, Jaroslav
    Tichy, Radek
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS (MESAS 2020), 2021, 12619 : 3 - 14