An iterative regularization method for total variation-based image restoration

被引:1341
|
作者
Osher, S
Burger, M
Goldfarb, D
Xu, JJ
Yin, WT
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[3] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
来源
MULTISCALE MODELING & SIMULATION | 2005年 / 4卷 / 02期
关键词
iterative regularization; total variation; Bregman distances; denoising; deblurring;
D O I
10.1137/040605412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods by using total variation regularization. We obtain rigorous convergence results and effective stopping criteria for the general procedure. The numerical results for denoising appear to give significant improvement over standard models, and preliminary results for deblurring/denoising are very encouraging.
引用
收藏
页码:460 / 489
页数:30
相关论文
共 50 条
  • [1] Efficient Iterative Regularization Method for Total Variation-Based Image Restoration
    Ma, Ge
    Yan, Ziwei
    Li, Zhifu
    Zhao, Zhijia
    ELECTRONICS, 2022, 11 (02)
  • [2] Iterative Nonlocal Total Variation Regularization Method for Image Restoration
    Xu, Huanyu
    Sun, Quansen
    Luo, Nan
    Cao, Guo
    Xia, Deshen
    PLOS ONE, 2013, 8 (06):
  • [4] A Truncated Lagrange Method for Total Variation-Based Image Restoration
    G. Landi
    Journal of Mathematical Imaging and Vision, 2007, 28 : 113 - 123
  • [5] Based on total variation regularization iterative blind image restoration algorithm
    1600, International Frequency Sensor Association (167):
  • [6] An Iterative Scheme for Total Variation-Based Image Denoising
    Dokkyun Yi
    Journal of Scientific Computing, 2014, 58 : 648 - 671
  • [7] An Iterative Scheme for Total Variation-Based Image Denoising
    Yi, Dokkyun
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (03) : 648 - 671
  • [9] A nonlinear primal-dual method for total variation-based image restoration
    Chan, TF
    Golub, GH
    Mulet, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06): : 1964 - 1977
  • [10] Nonlinear primal-dual method for total variation-based image restoration
    Chan, Tony F.
    Golub, Gene H.
    Mulet, Pep
    SIAM Journal on Scientific Computing, 20 (06): : 1964 - 1977