A Model Comparison Approach to Posterior Predictive Model Checks in Bayesian Confirmatory Factor Analysis

被引:2
|
作者
Zhang, Jihong [1 ]
Templin, Jonathan [1 ]
Mintz, Catherine E. [1 ]
机构
[1] Univ Iowa, Amer Board Pediat, Iowa City, IA 52242 USA
关键词
Bayesian analysis; posterior predictive modeling checking; posterior predictive p value; structural equation modeling; FIT;
D O I
10.1080/10705511.2021.2012682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by comparing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates. We propose a new method of PPMC based on comparing posterior predictive distributions of a hypothesized and saturated BCFA model. The method uses the predictive distribution of the saturated model as a reference and the Kolmogorov-Smirnov (KS) statistic to quantify the local misfit of hypothesized models. The results of the simulation study suggest that the saturated model PPMC approach was an accurate method of determining local model misfit and could be used for model comparison. A real data example is also provided in this study.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 50 条
  • [1] A Bayesian Saturated Model Approach to Posterior Predictive Model Checks in Confirmatory Factor Analysis
    Zhang, Jihong
    Templin, Jonathan
    Mintz, Catherine E.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 55 (01) : 161 - 162
  • [2] Assessment of Item Response Model-Data Fit Via Bayesian Limited Information Model Comparison Posterior Predictive Checks
    Mintz, Catherine E.
    Templin, Jonathan
    Zhang, Jihong
    MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 55 (01) : 160 - 160
  • [3] Holdout predictive checks for Bayesian model criticism
    Moran, Gemma E.
    Blei, David M.
    Ranganath, Rajesh
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 86 (01) : 194 - 214
  • [4] Bayesian posterior predictive checks for complex models
    Lynch, SM
    Western, B
    SOCIOLOGICAL METHODS & RESEARCH, 2004, 32 (03) : 301 - 335
  • [5] Posterior predictive model checks for disease mapping models
    Stern, HS
    Cressie, N
    STATISTICS IN MEDICINE, 2000, 19 (17-18) : 2377 - 2397
  • [6] blcfa: An R Package for Bayesian Model Modification in Confirmatory Factor Analysis
    Zhang, Lijin
    Pan, Junhao
    Dube, Laurette
    Ip, Edward Haksing
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (04) : 649 - 658
  • [7] Posterior Predictive Simulation Checks for Hierarchical Bayesian Modelling
    Elobaid, Rafida M.
    Akma, Noor, I
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2010, 19 (D10): : 40 - 49
  • [8] Bayesian factor selection in a hybrid approach to confirmatory factor analysis
    Nie, Junyu
    Yu, Jihnhee
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (15) : 3005 - 3038
  • [9] Posterior Predictive Bayesian Phylogenetic Model Selection
    Lewis, Paul O.
    Xie, Wangang
    Chen, Ming-Hui
    Fan, Yu
    Kuo, Lynn
    SYSTEMATIC BIOLOGY, 2014, 63 (03) : 309 - 321
  • [10] A BAYESIAN-APPROACH TO CONFIRMATORY FACTOR-ANALYSIS
    LEE, SY
    PSYCHOMETRIKA, 1981, 46 (02) : 153 - 160