A Point of Tangency Between Combinatorics and Differential Geometry

被引:1
|
作者
Motta, Francis C. [1 ]
Shipman, Patrick D. [1 ]
Springer, Bethany [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2015年 / 122卷 / 01期
关键词
D O I
10.4169/amer.math.monthly.122.01.52
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Edges of de Bruijn graphs, whose labeled vertices are arranged in sequential order on a circle, envelop epicycloids.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [1] Configurations between geometry and combinatorics
    Gropp, H
    DISCRETE APPLIED MATHEMATICS, 2004, 138 (1-2) : 79 - 88
  • [2] Differential geometry of the group of tangency transformations III Infinitesimal double homogenous tangency transformations and their connection to mechanics and electrodynamics
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1937, 40 (6/10): : 470 - 480
  • [3] Point of tangency between coronavirus disease and endothelial injury
    So Sampei
    Hideshi Okada
    Hiroyuki Tomita
    Akio Suzuki
    Takahide Nawa
    Shinji Ogura
    International Journal of Emergency Medicine, 2021, 14
  • [4] Point of tangency between coronavirus disease and endothelial injury
    Sampei, So
    Okada, Hideshi
    Tomita, Hiroyuki
    Suzuki, Akio
    Nawa, Takahide
    Ogura, Shinji
    INTERNATIONAL JOURNAL OF EMERGENCY MEDICINE, 2021, 14 (01)
  • [5] Interactions between Digital Geometry and Combinatorics onWords
    Brlek, Srecko
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (63): : 1 - 12
  • [6] Hurwitz Numbers: On the Edge Between Combinatorics and Geometry
    Lando, Sergei K.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2444 - 2470
  • [7] Combinatorics and geometry
    Rodriguez-Villegas, Fernando
    MATHEMATICAL CONGRESS OF THE AMERICAS, 2016, 656 : 141 - 147
  • [8] A 4-POINT TANGENCY
    NEWCOMB, WA
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01): : 58 - 59
  • [9] Combinatorics and integrable geometry
    van Moerbeke, Pierre
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 335 - 362
  • [10] The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry
    Bonnard, B.
    Charlot, G.
    Ghezzi, R.
    Janin, G.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (01) : 141 - 161