Bioperators on soft topological spaces

被引:15
|
作者
Asaad, Baravan A. [1 ,2 ]
Al-shami, Tareq M. [3 ]
Mhemdi, Abdelwaheb [4 ]
机构
[1] Cihan Univ Duhok, Coll Sci, Dept Comp Sci, Duhok, Iraq
[2] Univ Zakho, Fac Sci, Dept Math, Zakho, Iraq
[3] Sanaa Univ, Dept Math, Sanaa, Yemen
[4] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Aflaj, Dept Math, Riyadh, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
关键词
bioperators (gamma)over-tilde and (gamma)over-tilde ' on (tau)over-tilde; soft; ((gamma)over-tilde; (gamma)over-tilde ')-open sets; (gamma)over-tilde ')-g.closed sets; (gamma)over-tilde; ')-T-1/2; spaces; SEPARATION AXIOMS; SETS; REDUCTION; EQUALITY;
D O I
10.3934/math.2021720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To contribute to soft topology, we originate the notion of soft bioperators (gamma) over tilde and (gamma) over tilde'. Then, we apply them to analyze soft ((gamma) over tilde, (gamma) over tilde')-open sets and study main properties. We also prove that every soft ((gamma) over tilde, (gamma) over tilde')-open set is soft open; however, the converse is true only when the soft topological space is soft ((gamma) over tilde, (gamma) over tilde')-regular. After that, we define and study two classes of soft closures namely Cl-((gamma) over tilde,Cl- (gamma) over tilde') and (tau) over tilde (((gamma) over tilde, (gamma) over tilde'))-Cl operators, and two classes of soft interior namely Int(((gamma) over tilde, (gamma) over tilde')) and (tau) over tilde (((gamma) over tilde, (gamma) over tilde'))-Int operators. Moreover, we introduce the notions of soft ((gamma) over tilde, (gamma) over tilde')-g.closed sets and soft ((gamma) over tilde, (gamma) over tilde')-T-1/2 spaces, and explore their fundamental properties. In general, we explain the relationships between these notions, and give some counterexamples.
引用
下载
收藏
页码:12471 / 12490
页数:20
相关论文
共 50 条
  • [1] On soft covering spaces in soft topological spaces
    Abu Saleem, Mohammed
    AIMS MATHEMATICS, 2024, 9 (07): : 18134 - 18142
  • [2] On soft topological spaces
    Shabir, Muhammad
    Naz, Munazza
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (07) : 1786 - 1799
  • [3] On Soft Topological Spaces
    Georgiou, D. N.
    Megaritis, A. C.
    Petropoulos, V. I.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1889 - 1901
  • [4] On Soft ω-Connectedness in Soft Topological Spaces
    Rathee, Savita
    Girdhar, Ridam
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (03): : 457 - 474
  • [5] Soft ω*-Paracompactness in Soft Topological Spaces
    Al Ghour, Samer
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2021, 21 (01) : 57 - 65
  • [6] CATS of soft topological spaces
    Cetkin, Vildan
    Aygunoglu, Abdulkadir
    Aygun, Halis
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (04) : 1903 - 1913
  • [7] Bipolar Soft Topological Spaces
    Fadel, Asmaa
    Dzul-Kifli, Syahida Che
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (02): : 227 - 245
  • [8] Soft Bigeneralized Topological Spaces
    Ozturk, Taha Yasin
    Aras, Cigdem Gunduz
    Yolcu, Adem
    FILOMAT, 2018, 32 (16) : 5679 - 5690
  • [9] On soft topological ordered spaces
    Al-shami, T. M.
    El-Shafei, M. E.
    Abo-Elhamayel, M.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 556 - 566
  • [10] Convergence in soft topological spaces
    Hussein, Hanan Ali
    Hamzah, Sattar Hameed
    Abdullah, Habeeb Kareem
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (06) : 1193 - 1206