Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter

被引:3
|
作者
Yokus, Nihal [1 ]
Koprubasi, Turhan [2 ]
机构
[1] Karamanoglu Mehmetbey Univ, Dept Math, TR-70100 Karaman, Turkey
[2] Kastamonu Univ, Dept Math, TR-37100 Kastamonu, Turkey
关键词
Sturm-Liouville equations; eigenparameter; eigenvalues; spectral singularities; QUADRATIC PENCIL; SCHRODINGER OPERATOR; ADJOINT; EIGENPARAMETER; SINGULARITIES; EXPANSION; EQUATIONS;
D O I
10.1186/s13660-015-0563-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the operator L generated in L-2(R+) by the Sturm-Liouville equation -y '' + q(x)y = lambda(2)y, chi is an element of R+ = [0,infinity), and the boundary condition (alpha(0) + alpha(1)lambda + alpha(2)(2 lambda))y' (0) - (beta(0) + beta(1)lambda + beta(2)lambda(2))y(0) = 0, where q is a complex-valued function, alpha(i), beta(i) is an element of C, i = 0, 1, 2, and lambda is an eigenparameter. Under the conditions q, q' is an element of AC((R)+), lim(x ->infinity) vertical bar q(x)vertical bar + vertical bar q'(x)vertical bar = 0, sup(chi is an element of R+) [e(epsilon)root(chi)vertical bar q ''(chi)vertical bar] < infinity, epsilon > 0, using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.
引用
收藏
页数:7
相关论文
共 50 条