SECOND-ORDER PERFORMANCE ANALYSIS OF STANDARD ESPRIT

被引:0
|
作者
Steinwandt, Jens [1 ]
Roemer, Florian [2 ,3 ]
Haardt, Martin [1 ]
机构
[1] Ilmenau Univ Technol, Commun Res Lab, POB 100565, D-98684 Ilmenau, Germany
[2] Ilmenau Univ Technol, Digital Broadcasting Res Lab, POB 100565, D-98684 Ilmenau, Germany
[3] Fraunhofer Inst Integrated Circuits IIS, Erlangen, Germany
关键词
ESPRIT; performance analysis; second-order; DOA estimation; MAXIMUM-LIKELIHOOD; DOA ESTIMATION; ESTIMATION ALGORITHMS; MATRIX; MUSIC;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper provides a second-order (SO) analytical performance analysis of the 1-D Standard ESPRIT algorithm. Existing performance analysis frameworks are based on first-order (FO) approximations of the parameter estimation error, which are asymptotic in the effective signal-to-noise ratio (SNR), i.e., they become exact for either high SNRs or a large sample size. However, these FO expressions do not capture the algorithmic behavior in the threshold region at low SNRs or for a small sample size. Yet, such conditions are often encountered in practice. Therefore, we present a closed-form expression for the parameter estimation error of 1-D Standard ESPRIT up to the SO that is valid in a wider effective SNR range. Moreover, we derive an analytical mean square error (MSE) expression, where we assume a zero-mean circularly symmetric complex Gaussian noise distribution. Finally, we use the existing FO MSE expression and the derived SO MSE expression to analytically compute the SNR breakdown threshold of the MSE threshold region. Empirical simulations verify the analytical expressions.
引用
收藏
页码:3051 / 3055
页数:5
相关论文
共 50 条
  • [1] Second-Order Multidimensional ICA: Performance Analysis
    Lahat, Dana
    Cardoso, Jean-Francois
    Messer, Hagit
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (09) : 4598 - 4610
  • [2] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    [J]. Mathematical Programming, 2020, 180 : 75 - 116
  • [3] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    [J]. MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [4] PERFORMANCE ANALYSIS OF SECOND-ORDER STATISTICS FOR CYCLOSTATIONARY SIGNALS
    姜鸣
    陈进
    [J]. Journal of Shanghai Jiaotong University(Science), 2002, (02) : 158 - 161
  • [5] R-Dimensional ESPRIT-Type Algorithms for Strictly Second-Order Non-Circular Sources and Their Performance Analysis
    Steinwandt, Jens
    Roemer, Florian
    Haardt, Martin
    Del Galdo, Giovanni
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (18) : 4824 - 4838
  • [6] Asymptotic performance analysis of ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms
    Yuen, N
    Friedlander, B
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (10) : 2537 - 2550
  • [7] Second-order optimal subspace estimation for ESPRIT-like DOA estimation
    Sartori, Daniel D.
    Adhikari, Kaushallya
    Vaccaro, Richard J.
    [J]. SIGNAL PROCESSING, 2024, 217
  • [8] Design and Performance Analysis of a Modified MRAC for Second-order Processes
    Sengupta, Reshma
    Nath, Ujjwal Manikya
    Dey, Chanchal
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON POWER, CONTROL & EMBEDDED SYSTEMS (ICPCES), 2017,
  • [9] An analysis of second-order autoshaping
    Ward-Robinson, J
    [J]. LEARNING AND MOTIVATION, 2004, 35 (01) : 1 - 21
  • [10] Second-order decision analysis
    Ekenberg, L
    Thorbiörnson, J
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (01) : 13 - 37