CONTINUOUS BESSEL WAVELET TRANSFORM OF DISTRIBUTIONS

被引:3
|
作者
Upadhyay, Santosh Kumar [1 ]
Maurya, Jay Singh [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
关键词
Hankel transform; continuous Bessel wavelet transform; Zemanian space and its dual; Sobolev space; Besov space and Triebel-Lizorkin space; HANKEL CONVOLUTION; SPACES; OPERATORS; EQUATIONS;
D O I
10.1216/rmj.2021.51.1463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The continuous Bessel wavelet transform is extended to distributions in H'(mu) (0, infinity) and obtained continuity results. Boundedness of continuous Bessel wavelet transform is investigated in a generalized Sobolev space, Besov space and Triebel-Lizorkin space.
引用
收藏
页码:1463 / 1488
页数:26
相关论文
共 50 条
  • [1] The Bessel wavelet transform of distributions in β′μ-space
    Maurya, Jay Singh
    Upadhyay, Santosh Kumar
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (04)
  • [2] CONTINUOUS WAVELET TRANSFORM OF SCHWARTZ DISTRIBUTIONS
    Pandey, J. N.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 2005 - 2028
  • [3] The continuous fractional Bessel wavelet transform and its applications
    Upadhyay, S. K.
    Mishra, Kush Kumar
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (7-8) : 403 - 420
  • [4] Multidimensional continuous Bessel wavelet transform: properties and applications
    Chabeh, W.
    Saoudi, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [5] Continuous wavelet transform of Schwartz tempered distributions
    Pandey, J. N.
    Upadhyay, S. K.
    COGENT MATHEMATICS & STATISTICS, 2019, 6
  • [6] The Continuous Wavelet Transform for a q-Bessel Type Operator
    Pandey, C. P.
    Saikia, Jyoti
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [7] On Some q-Bessel Type Continuous Wavelet Transform
    Ben Mabrouk, Anouar
    Rezgui, Imen
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 19
  • [8] Bessel Wavelet Transform and Fractional Bessel Wavelet Transform on Functions of Rapid Descent
    Moorthy R.S.
    Rejini M.T.
    International Journal of Applied and Computational Mathematics, 2022, 8 (3)
  • [9] The Bessel wavelet transform of distributions in DL2' -type space
    Amit
    Maurya, Jay Singh
    Upadhyay, Santosh Kumar
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (04)
  • [10] The Continuous Generalized Wavelet Transform Associated with q-Bessel Operator
    Dixit, M. M.
    Pandey, C. P.
    Das, D.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41