On sequence-covering near-compact images of metric spaces

被引:1
|
作者
Ling, Xuewei [1 ]
Lin, Shou [2 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Ningde Normal Univ, Inst Math, Ningde 352100, Fujian, Peoples R China
关键词
Near-compact mappings; Boundary-compact mappings; Sequentially open points; Sequence-covering mappings; Point-star networks; cs-covers; MAPPINGS;
D O I
10.1016/j.topol.2020.107528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define near-compact mappings and characterize the sequence-covering, near-compact images of metric spaces. The following main result is obtained. The following are equivalent for a space X: (1) X is a 1-sequence-covering near-compact image of a metric space. (2) X is a sequence-covering near-compact image of a metric space. (3) X has a sequence of cs-covers which is a point-finite point-star network at NS(X). (4) X has a sequence of sn-covers which is a point-finite point-star network at NS(X). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ON COMPACT-COVERING AND SEQUENCE-COVERING IMAGES OF METRIC SPACES
    Zhang, Jing
    [J]. MATEMATICKI VESNIK, 2012, 64 (02): : 97 - 107
  • [2] A NOTE ON SEQUENCE-COVERING π-IMAGES OF METRIC SPACES
    Li, Zhaowen
    Xie, Tusheng
    [J]. MATEMATICKI VESNIK, 2012, 64 (04): : 326 - 329
  • [3] The Sequence-covering Compact Images of Paracompact Locally Compact Spaces
    李进金
    李克典
    [J]. Communications in Mathematical Research, 2000, (04) : 463 - 468
  • [4] Sequence-covering maps of metric spaces
    Lin, S
    Yan, PF
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2001, 109 (03) : 301 - 314
  • [5] On sequence-covering msss-images of locally separable metric spaces
    Van Dung N.
    [J]. Lobachevskii Journal of Mathematics, 2009, 30 (1) : 67 - 75
  • [6] ON SEQUENCE-COVERING mssc-IMAGES OF LOCALLY SEPARABLE METRIC SPACES
    Nguyen Van Dung
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2010, 87 (101): : 143 - 153
  • [7] SEQUENCE-COVERING MAPS ON GENERALIZED METRIC SPACES
    Lin, Fucai
    Lin, Shou
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 927 - 943
  • [8] ON SEQUENCE-COVERING pi-s-IMAGES OF LOCALLY SEPARABLE METRIC SPACES
    Nguyen Van Dung
    [J]. MATEMATICKI VESNIK, 2009, 61 (02): : 131 - 137
  • [9] COMPACT-COVERING AND 1-SEQUENCE-COVERING IMAGES OF METRIC SPACES
    Lin, Shou
    Ge, Ying
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (01): : 293 - 305
  • [10] COMPACT-COVERING IMAGES OF METRIC SPACES
    MICHAEL, E
    NAGAMI, K
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (01) : 260 - 266