Robust Onboard Visual SLAM for Autonomous MAVs

被引:4
|
作者
Yang, Shaowu [1 ]
Scherer, Sebastian A. [1 ]
Zell, Andreas [1 ]
机构
[1] Univ Tubingen, Dept Comp Sci, Tubingen, Germany
来源
关键词
D O I
10.1007/978-3-319-08338-4_27
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a visual simultaneous localization and mapping (SLAM) system consisting of a robust visual odometry and an efficient back-end with loop-closure detection and pose-graph optimization (PGO). Robustness of the visual odometry is achieved by utilizing dual cameras pointing different directions with no overlap in their respective fields of view mounted on an micro aerial vehicle (MAV). The theory behind this dual-camera visual odometry can be easily extended to applications with multiple cameras. The back-end of the SLAM system maintains a keyframe-based global map, which is used for loop-closure detection. An adaptivewindow PGO method is proposed to refine keyframe poses of the global map and thus correct pose drift that is inherent in the visual odometry. The position of each map point is then refined implicitly due to its relative representation to its source keyframe. We demonstrate the efficiency of the proposed visual SLAM algorithm for applications onboard MAVs in experiments with both autonomous and manual flights. The pose tracking results are compared with the ground truth data provided by an external tracking system.
引用
收藏
页码:361 / 373
页数:13
相关论文
共 50 条
  • [1] Visual SLAM for Autonomous MAVs with Dual Cameras
    Yang, Shaowu
    Scherer, Sebastian A.
    Zell, Andreas
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5227 - 5232
  • [2] Efficient Onbard RGBD-SLAM for Autonomous MAVs
    Scherer, Sebastian A.
    Zell, Andreas
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 1062 - 1068
  • [3] Onboard CNN-Based Processing for Target Detection and Autonomous Landing for MAVs
    Cabrera-Ponce, A. A.
    Martinez-Carranza, J.
    PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 195 - 208
  • [4] Visual SLAM for Autonomous Ground Vehicles
    Lategahn, Henning
    Geiger, Andreas
    Kitt, Bernd
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 1732 - 1737
  • [5] Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site Using Onboard Monocular Vision
    Yang, Shaowu
    Scherer, Sebastian A.
    Schauwecker, Konstantin
    Zell, Andreas
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 74 (1-2) : 27 - 43
  • [6] Robust Underwater SLAM using Autonomous Relocalisation
    Willners, Jonatan Scharff
    Carreno, Yaniel
    Xu, Shida
    Luczynski, Tomasz
    Katagiri, Sean
    Roe, Joshua
    Pairet, Eric
    Petillot, Yvan
    Wang, Sen
    IFAC PAPERSONLINE, 2021, 54 (16): : 273 - 280
  • [7] Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site Using Onboard Monocular Vision
    Shaowu Yang
    Sebastian A. Scherer
    Konstantin Schauwecker
    Andreas Zell
    Journal of Intelligent & Robotic Systems, 2014, 74 : 27 - 43
  • [8] Robust Visual SLAM Across Seasons
    Naseer, Tayyab
    Ruhnke, Michael
    Stachniss, Cyrill
    Spinello, Luciano
    Burgard, Wolfram
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 2529 - 2535
  • [9] Stereo Visual SLAM for Autonomous Vehicles: A Review
    Gao, Boyu
    Lang, Haoxiang
    Ren, Jing
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1316 - 1322
  • [10] Side Scan Sonar Based Onboard SLAM System for Autonomous Underwater Vehicles
    Siantidis, Konstantinos
    2016 IEEE/OES AUTONOMOUS UNDERWATER VEHICLES (AUV), 2016, : 195 - 200