Unsupervised feature learning for environmental sound classification using Weighted Cycle-Consistent Generative Adversarial Network

被引:33
|
作者
Esmaeilpour, Mohammad [1 ]
Cardinal, Patrick [1 ]
Koerich, Alessandro Lameiras [1 ]
机构
[1] Univ Quebec, ETS, 1100 Notre Dame West, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Environmental sound classification; Generative Adversarial Network (GAN); Cycle-Consistent GAN; K-means plus; Random forests; QUALITY ASSESSMENT; AUDIO; RECOGNITION;
D O I
10.1016/j.asoc.2019.105912
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a novel environmental sound classification approach incorporating unsupervised feature learning via the spherical K-Means++ algorithm and a new architecture for high-level data augmentation. The audio signal is transformed into a 2D representation using a discrete wavelet transform (DWT). The DWT spectrograms are then augmented by a novel architecture for cycle-consistent generative adversarial network. This high-level augmentation bootstraps generated spectrograms in both intra-and inter-class manners by translating structural features from sample to sample. A codebook is built by coding the DWT spectrograms with the speeded-up robust feature detector and the K-Means++ algorithm. The Random forest is the final learning algorithm which learns the environmental sound classification task from the code vectors. Experimental results in four benchmarking environmental sound datasets (ESC-10, ESC-50, UrbanSound8k, and DCASE-2017) have shown that the proposed classification approach outperforms most of the state-of-the-art classifiers, including convolutional neural networks such as AlexNet and GoogLeNet, improving the classification rate between 3.51% and 14.34%, depending on the dataset. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Unsupervised Image Dedusting via a Cycle-Consistent Generative Adversarial Network
    Gao, Guxue
    Lai, Huicheng
    Jia, Zhenhong
    [J]. REMOTE SENSING, 2023, 15 (05)
  • [2] Unsupervised Cycle-Consistent Generative Adversarial Networks for Pan Sharpening
    Zhou, Huanyu
    Liu, Qingjie
    Weng, Dawei
    Wang, Yunhong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] MRI Image Harmonization using Cycle-Consistent Generative Adversarial Network
    Modanwal, Gourav
    Vellal, Adithya
    Buda, Mateusz
    Mazurowski, Maciej A.
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [4] Seismic impedance inversion based on cycle-consistent generative adversarial network
    Yu-Qing Wang
    Qi Wang
    Wen-Kai Lu
    Qiang Ge
    Xin-Fei Yan
    [J]. Petroleum Science, 2022, (01) : 147 - 161
  • [5] Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Network
    Zheng, Shunyuan
    Sun, Jiamin
    Liu, Qinglin
    Qi, Yuankai
    Yan, Jianen
    [J]. ELECTRONICS, 2020, 9 (11) : 1 - 19
  • [6] Seismic impedance inversion based on cycle-consistent generative adversarial network
    Wang, Yu-Qing
    Wang, Qi
    Lu, Wen-Kai
    Ge, Qiang
    Yan, Xin-Fei
    [J]. PETROLEUM SCIENCE, 2022, 19 (01) : 147 - 161
  • [7] Seismic impedance inversion based on cycle-consistent generative adversarial network
    YuQing Wang
    Qi Wang
    WenKai Lu
    Qiang Ge
    XinFei Yan
    [J]. Petroleum Science., 2022, 19 (01) - 161
  • [8] 3D gravity inversion using cycle-consistent generative adversarial network
    Qiao, Shu-Bo
    Li, Hou-Pu
    Qi, Rui
    Zhang, Yu-Jie
    Xie, Shi-Min
    [J]. APPLIED GEOPHYSICS, 2024,
  • [9] Semi-Supervised MIMO Detection Using Cycle-Consistent Generative Adversarial Network
    Zhu, Hongzhi
    Guo, Yongliang
    Xu, Wei
    You, Xiaohu
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (05) : 1226 - 1240
  • [10] Normalization of breast MRIs using cycle-consistent generative adversarial networks
    Modanwal, Gourav
    Vellal, Adithya
    Mazurowski, Maciej A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208 (208)