Einstein nilpotent Lie groups

被引:15
|
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
LEFT INVARIANT METRICS; NILMANIFOLDS; NONEXISTENCE; CURVATURE; MANIFOLDS;
D O I
10.1016/j.jpaa.2018.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural GL(n, R) action, whose orbits parametrize Lie groups with a left-invariant metric; we show that the Ricci operator can be identified with the moment map relative to a natural symplectic structure. From this description we deduce that the Ricci operator is the derivative of the scalar curvature s under gauge transformations of the metric, and show that Lie algebra derivations with nonzero trace obstruct the existence of Einstein metrics with s not equal 0. Using the notion of nice Lie algebra, we give the first example of a left-invariant Einstein metric with s not equal 0 on a nilpotent Lie group. We show that nilpotent Lie groups of dimension <= 6 do not admit such a metric, and a similar result holds in dimension 7 with the extra assumption that the Lie algebra is nice. (C) 2018 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:976 / 997
页数:22
相关论文
共 50 条
  • [1] On Einstein Lorentzian nilpotent Lie groups
    Boucetta, Mohamed
    Tibssirte, Oumaima
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (12)
  • [2] Subsemigroups of Nilpotent Lie Groups
    Abels, Herbert
    Vinberg, Ernest B.
    JOURNAL OF LIE THEORY, 2020, 30 (01) : 171 - 178
  • [3] On Einstein extensions of nilpotent metric Lie algebras
    Yu. G. Nikonorov
    Siberian Advances in Mathematics, 2007, 17 (3) : 153 - 170
  • [4] APPROXIMATE MULTIPLICATIVE GROUPS IN NILPOTENT LIE GROUPS
    Fisher, David
    Katz, Nets Hawk
    Peng, Irine
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (05) : 1575 - 1580
  • [5] Extremal Curves in Nilpotent Lie Groups
    Le Donne, Enrico
    Leonardi, Gian Paolo
    Monti, Roberto
    Vittone, Davide
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (04) : 1371 - 1401
  • [6] UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS
    KIRILLOV, AA
    DOKLADY AKADEMII NAUK SSSR, 1960, 130 (05): : 966 - 968
  • [7] UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS
    KIRILLOV, AA
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (02): : 283 - &
  • [8] Laplacian solitons on nilpotent Lie groups
    Nicolini, Marina
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (02) : 183 - 196
  • [9] NILPOTENT LIE GROUPS ACTING ON SURFACES
    DIAZMIRANDA, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 1978, 102 (02): : 155 - 165
  • [10] Optimal control on nilpotent Lie groups
    Monroy-Pérez, F
    Anzaldo-Meneses, A
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (04) : 487 - 504