Strichartz Estimates for the Schrodinger Equation on Polygonal Domains

被引:15
|
作者
Blair, Matthew D. [2 ]
Ford, G. Austin [3 ]
Herr, Sebastian [4 ]
Marzuola, Jeremy L. [1 ]
机构
[1] Columbia Univ, Dept Appl Math, New York, NY 10027 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[4] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
Partial differential equations; Strichartz estimates; Billiards; COMPACT MANIFOLDS; SPECTRAL MULTIPLIERS; SINGULARITIES; INEQUALITIES; OPERATORS; GEOMETRY; SPACES;
D O I
10.1007/s12220-010-9187-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Strichartz estimates with a loss of derivatives for the Schrodinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates on the polygon follow from those on Euclidean surfaces with conical singularities. We develop a Littlewood-Paley squarefunction estimate with respect to the spectrum of the Laplacian on these spaces. This allows us to reduce matters to proving estimates at each frequency scale. The problem can be localized in space provided the time intervals are sufficiently small. Strichartz estimates then follow from a recent result of the second author regarding the Schrodinger equation on the Euclidean cone.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条