On the number of increasing trees with label repetitions

被引:2
|
作者
Bodini, Olivier [1 ]
Genitrini, Antoine [2 ]
Gittenberger, Bernhard [3 ]
Wagner, Stephan [4 ]
机构
[1] Univ Paris 13, Inst Galilee, CNRS UMR 7030, Lab Informat Paris Nord, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Sorbonne Univ, CNRS, LIP6, UMR 7606, F-75005 Paris, France
[3] Tech Univ Wien, Dept Discrete Math & Geometry, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
[4] Stellenbosch Univ, Dept Math Sci, Math Div, Private Bag X1, ZA-7602 Matieland, South Africa
基金
新加坡国家研究基金会; 奥地利科学基金会;
关键词
Increasing tree; Borel transform; Evolution process; Ordinary differential equation; Asymptotic enumeration;
D O I
10.1016/j.disc.2019.111722
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic number of certain monotonically labeled increasing trees arising from a generalized evolution process. The main difference between the presented model and the classical model of binary increasing trees is that the same label can appear in distinct branches of the tree. In the course of the analysis we develop a method to extract asymptotic information on the coefficients of purely formal power series. The method is based on an approximate Borel transform (or, more generally, Mittag-Leffler transform) which enables us to quickly guess the exponential growth rate. With this guess the sequence is then rescaled and a singularity analysis of the generating function of the scaled counting sequence yields accurate asymptotics. The actual analysis is based on differential equations and a Tauberian argument. The counting problem for trees of size n exhibits interesting asymptotics involving powers of n with irrational exponents. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] FORESTS OF LABEL-INCREASING TREES
    RIORDAN, J
    JOURNAL OF GRAPH THEORY, 1979, 3 (02) : 127 - 133
  • [2] BOUNDS ON THE CONVEX LABEL NUMBER OF TREES
    BERN, M
    KLAWE, M
    WONG, A
    COMBINATORICA, 1987, 7 (03) : 221 - 230
  • [3] Distribution of repetitions of ancestors in genealogical trees
    Derrida, B
    Manrubia, SC
    Zanette, DH
    PHYSICA A, 2000, 281 (1-4): : 1 - 16
  • [4] GAMES WITHOUT REPETITIONS ON TREES AND MULTITREES
    DZIECHCINSKAHALAMODA, Z
    MICHAEL, J
    SZWIEC, W
    ARCHIV DER MATHEMATIK, 1993, 61 (04) : 395 - 400
  • [5] ON NUMBER OF REPETITIONS IN MARKOV CHAINS
    IVANKOV, SA
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (03): : 505 - &
  • [6] Prediction of the Maximum Number of Repetitions and Repetitions in Reserve From Barbell Velocity
    Garcia-Ramos, Amador
    Torrejon, Alejandro
    Feriche, Belen
    Morales-Artacho, Antonio J.
    Perez-Castilla, Alejandro
    Padial, Paulino
    Haff, Guy Gregory
    INTERNATIONAL JOURNAL OF SPORTS PHYSIOLOGY AND PERFORMANCE, 2018, 13 (03) : 353 - 359
  • [7] Average number of occurrences of repetitions in a necklace
    Kusano, Kazuhiko
    Shinohara, Ayumi
    DISCRETE APPLIED MATHEMATICS, 2014, 163 : 334 - 342
  • [8] Plot size and number of repetitions in pigeonpea
    dos Santos, Gustavo Oliveira
    Cargnelutti Filho, Alberto
    Alves, Bruna Mendoca
    Burin, Claudia
    Facco, Giovani
    Toebe, Marcos
    Kleinpaul, Jessica Andiara
    Marcio Neu, Ismael Mario
    Stefanello, Reges Belle
    CIENCIA RURAL, 2016, 46 (01): : 44 - 52
  • [9] On bucket increasing trees, clustered increasing trees and increasing diamonds
    Kuba, Markus
    Panholzer, Alois
    COMBINATORICS PROBABILITY AND COMPUTING, 2022, 31 (04) : 629 - 661
  • [10] Plot size and number of repetitions in canola
    Cargnelutti Filho, Alberto
    Alves, Bruna Mendonca
    Burin, Claudia
    Kleinpaul, Jessica Andiara
    Silveira, Daniela Lixinski
    Simoes, Fernanda Martins
    BRAGANTIA, 2015, 74 (02) : 176 - 183