Facial Age Estimation Based on Structured Low-rank Representation

被引:0
|
作者
Yan, Chenjing [1 ]
Lang, Congyan [1 ]
Feng, Songhe [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China
关键词
facial age estimation; classification and regression; low-rank representation; block-diagonal;
D O I
10.1145/2733373.2806318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an algorithm based on structured, lowrank representation for facial age estimation. The proposed method learns the discriminative feature representation of images with the constraint of the classwise block-diagonal structure to promote discrimination of representations for robust recognition. A block-sparse regularizer is introduced to exploit the similarity and structure information of class. Based on the new representation, we estimate the accurate age using a regression function. By subtly introducing the structured, low-rank representation, we achieve good age estimation performance. Experimental results on three wellknown aging faces datasets have demonstrated that the proposed method is superior to the conventional approaches.
引用
收藏
页码:1207 / 1210
页数:4
相关论文
共 50 条
  • [1] STRUCTURED SPARSE REPRESENTATION WITH LOW-RANK INTERFERENCE
    Dao, Minh
    Suo, Yuanming
    Chin, Sang
    Tran, Trac D.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 106 - 110
  • [2] Multiple Network Fusion with Low-Rank Representation for Image-Based Age Estimation
    Hong, Chaoqun
    Zeng, Zhiqiang
    Wang, Xiaodong
    Zhuang, Weiwei
    APPLIED SCIENCES-BASEL, 2018, 8 (09):
  • [3] Low-Rank Structured Covariance Matrix Estimation
    Shikhaliev, Azer P.
    Potter, Lee C.
    Chi, Yuejie
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 700 - 704
  • [4] Robust Structured Low-Rank Representation for Image Segmentation
    You, Cong-Zhe
    Palade, Vasile
    Wu, Xiao-Jun
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2018, 27 (05)
  • [5] Learning Structured Low-Rank Representation via Matrix Factorization
    Shen, Jie
    Li, Ping
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 500 - 509
  • [6] An Improved Structured Low-Rank Representation for Disjoint Subspace Segmentation
    Lai Wei
    Yan Zhang
    Jun Yin
    Rigui Zhou
    Changming Zhu
    Xiafeng Zhang
    Neural Processing Letters, 2019, 50 : 1035 - 1050
  • [7] Image Deblurring with Low-rank Approximation Structured Sparse Representation
    Dong, Weisheng
    Shi, Guangming
    Li, Xin
    2012 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2012,
  • [8] Structured low-rank representation learning for hyperspectral sparse unmixing
    Zhang, Jian
    Dong, Hongsong
    Gao, Wenlian
    Zhang, Li
    Xue, Zhiwen
    Shen, Xiangfei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (02) : 351 - 375
  • [9] An Improved Structured Low-Rank Representation for Disjoint Subspace Segmentation
    Wei, Lai
    Zhang, Yan
    Yin, Jun
    Zhou, Rigui
    Zhu, Changming
    Zhang, Xiafeng
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1035 - 1050
  • [10] A regularized low-rank representation model for facial expression recognition
    Wang, Zhan
    Ruan, Qiuqi
    An, Gaoyun
    Jin, Yi
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 1072 - 1076