partial derivative problem for the generalized Korteweg-de Vries equation

被引:0
|
作者
Zenchuk, AI [1 ]
机构
[1] Russian Acad Sci, LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/1.567940
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized Korteweg-de Vries equation, which has applications in hydrodynamics, in particular, is essentially the first example of a case in which the partial derivative dressing of a nonlinear equation is constructed by introducing into the dressing operator an arbitrary function of the independent variables of this equation. The proposed algorithm reveals a class of solutions of this equation which are expressed in terms of the solution of algebraic equations. An example of a new type of solution whose derivative with respect to the independent variables has a power-law singularity at some point is presented. (C) 1998 American Institute of Physics. [S0021-3640(98)01221-3].
引用
收藏
页码:750 / 755
页数:6
相关论文
共 50 条
  • [1] On the cauchy problem for the generalized Korteweg-de Vries equation
    Molinet, L
    Ribaud, F
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (11-12) : 2065 - 2091
  • [3] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [4] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [5] Inverse source problem for a generalized Korteweg-de Vries equation
    Arivazhagan, Anbu
    Sakthivel, Kumarasamy
    Balan, Natesan Barani
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06): : 823 - 848
  • [6] Bifurcations in the Generalized Korteweg-de Vries Equation
    Kashchenko, S. A.
    Preobrazhenskaya, M. M.
    RUSSIAN MATHEMATICS, 2018, 62 (02) : 49 - 61
  • [7] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    TECHNICAL PHYSICS, 2024, : 2336 - 2338
  • [8] SOLUTION OF A GENERALIZED KORTEWEG-DE VRIES EQUATION
    TAGARE, SG
    CHAKRABARTI, A
    PHYSICS OF FLUIDS, 1974, 17 (06) : 1331 - 1332
  • [9] Generalized inversion of the Korteweg-de Vries equation
    Muccino, JC
    Bennett, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2002, 35 (03) : 227 - 263
  • [10] Neumann problem for the Korteweg-de Vries equation
    Hayashi, N
    Kaikina, EI
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (01) : 168 - 201