Analysis of Layer Efficiency and Layer Reduction on Pre-trained Deep Learning Models

被引:0
|
作者
Nugraha, Brilian Tafjira [1 ]
Su, Shun-Feng [1 ]
机构
[1] NTUST, Taipei 106, Taiwan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent technologies in the deep learning area enable many industries and practitioners fastening the development processes of their products. However, deep learning still encounters some potential issues like overfitting and huge size. The huge size greatly constrains performance and portability of the deep learning model in embedded devices with limited environments. Due to the paradigm of it mixed with the meaning of "deep" layers, many researchers tend to derive the pre-trained model into building deeper layers to solve their problems without knowing whether they are actually needed or not. To address these issues, we exploit the activation and gradient output and weight in each layer of the pre-trained models to measure its efficiencies. By exploiting them, we estimate the efficiencies using our measurements and compare it with the manual layer reduction to validate the most relevant method. We also use the method for continuous layer reductions for validation. With this approach, we save up to 12x and 26x of the time of one manual layer reduction and re-training on VGG-16 and custom AlexNet respectively.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Guiding The Last Layer in Federated Learning with Pre-Trained Models
    Legate, Gwen
    Bernier, Nicolas
    Caccia, Lucas
    Oyallon, Edouard
    Belilovsky, Eugene
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Unregistered Multiview Mammogram Analysis with Pre-trained Deep Learning Models
    Carneiro, Gustavo
    Nascimento, Jacinto
    Bradley, Andrew P.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 652 - 660
  • [3] Classification and Analysis of Pistachio Species with Pre-Trained Deep Learning Models
    Singh, Dilbag
    Taspinar, Yavuz Selim
    Kursun, Ramazan
    Cinar, Ilkay
    Koklu, Murat
    Ozkan, Ilker Ali
    Lee, Heung-No
    ELECTRONICS, 2022, 11 (07)
  • [4] Adversarial Attacks on Pre-trained Deep Learning Models for Encrypted Traffic Analysis
    Seok, Byoungjin
    Sohn, Kiwook
    JOURNAL OF WEB ENGINEERING, 2024, 23 (06): : 749 - 768
  • [5] Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models
    Albayrak, Umit
    Golcuk, Adem
    Aktas, Sinan
    Coruh, Ugur
    Tasdemir, Sakir
    Baykan, Omer Kaan
    AGRONOMY-BASEL, 2025, 15 (01):
  • [6] Exploratory Architectures Analysis of Various Pre-trained Image Classification Models for Deep Learning
    Deepa, S.
    Zeema, J. Loveline
    Gokila, S.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (01) : 66 - 78
  • [7] Enhancing coffee bean classification: a comparative analysis of pre-trained deep learning models
    Hassan E.
    Neural Computing and Applications, 2024, 36 (16) : 9023 - 9052
  • [8] Backdoor Attacks Against Transfer Learning With Pre-Trained Deep Learning Models
    Wang, Shuo
    Nepal, Surya
    Rudolph, Carsten
    Grobler, Marthie
    Chen, Shangyu
    Chen, Tianle
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (03) : 1526 - 1539
  • [9] Pre-trained deep learning models for brain MRI image classification
    Krishnapriya, Srigiri
    Karuna, Yepuganti
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [10] Quality of Pre-trained Deep-Learning Models for Palmprint Recognition
    Rosca, Valentin
    Ignat, Anca
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 202 - 209