On Semiparametric Mode Regression Estimation

被引:4
|
作者
Gannoun, Ali [1 ,2 ]
Saracco, Jerome [3 ]
Yu, Keming [4 ]
机构
[1] CNAM, Chaire Stat Appl, F-75141 Paris, France
[2] CNAM, CEDRIC, F-75141 Paris, France
[3] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
[4] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
关键词
Asymptotic normality; Hypothesis testing; Local linear kernel estimate; Mode; Prediction; Rate of convergence; Semiparametric regression; NONPARAMETRIC-ESTIMATION; ASYMPTOTIC NORMALITY; BANDWIDTH SELECTION; CROSS-VALIDATION; DENSITY;
D O I
10.1080/03610920902859581
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean, and median. In this article, the relation between mode, mean, and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function in the context of regression model, so that any m-step-ahead mean and median forecasts can then be substituted into the resultant model to deliver m-step-ahead mode prediction. In the semiparametric model, Least Squared Estimator (LSEs) for the model parameters and the simultaneous estimation of the unknown mean and median regression functions by the local linear kernel method are combined to infer about the parametric and nonparametric components of the proposed model. The asymptotic normality of these estimators is derived, and the asymptotic distribution of the parameter estimates is also given and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. These results are applied to obtain a data-based test for the dependence of mode regression over mean and median regression under a regression model.
引用
收藏
页码:1141 / 1157
页数:17
相关论文
共 50 条
  • [1] Estimation in semiparametric spatial regression
    Gao, Jiti
    Lu, Zudi
    Tjostheim, Dag
    [J]. ANNALS OF STATISTICS, 2006, 34 (03): : 1395 - 1435
  • [2] Semiparametric estimation of outbreak regression
    Frisen, Marianne
    Andersson, Eva
    Pettersson, Kjell
    [J]. STATISTICS, 2010, 44 (02) : 107 - 117
  • [3] Ridge estimation of a semiparametric regression model
    Hu, HC
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 215 - 222
  • [4] Simultaneous Semiparametric Estimation of Clustering and Regression
    Marbac, Matthieu
    Sedki, Mohammed
    Biernacki, Christophe
    Vandewalle, Vincent
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 477 - 485
  • [5] Semiparametric estimation of count regression models
    Gurmu, S
    Rilstone, P
    Stern, S
    [J]. JOURNAL OF ECONOMETRICS, 1999, 88 (01) : 123 - 150
  • [6] Semiparametric estimation of count regression models
    Department of Economics, Georgia State University, University Plaza, Atlanta, GA 30303, United States
    不详
    不详
    [J]. J Econom, 1 (123-150):
  • [7] Estimation in semiparametric time series regression
    Chen, Jia
    Gao, Jiti
    Li, Degui
    [J]. STATISTICS AND ITS INTERFACE, 2011, 4 (02) : 243 - 251
  • [8] On variance estimation in semiparametric regression models
    Cheng, FX
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (08) : 1737 - 1742
  • [9] Semiparametric regression estimation in copula models
    Bagdonavicius, Vilijandas
    Malov, Sergey V.
    Nikulin, Mikhail S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1449 - 1467
  • [10] Semiparametric estimation of a truncated regression model
    Chen, Songnian
    Zhou, Xianbo
    [J]. JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 297 - 304