A parallel algorithm based on convexity for the computing of Delaunay tessellation

被引:5
|
作者
Phan Thanh An [1 ,2 ]
Le Hong Trang [1 ,3 ]
机构
[1] Inst Super Tecn, Ctr Math & Its Applicat CEMAT, P-1049001 Lisbon, Portugal
[2] Inst Math, Hanoi 10307, Vietnam
[3] Vinh Univ, Fac Informat & Informat Technol, Vinh Town, Vietnam
关键词
Geometric computing; Parallel method; Delaunay tessellation; Convex hull; Convexity; VORONOI DIAGRAMS;
D O I
10.1007/s11075-011-9493-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper describes a parallel algorithm for computing an n-dimensional Delaunay tessellation using a divide-conquer strategy. Its implementation (using MPI library for C) in the case n = 2, relied on restricted areas to discard non-Delaunay edges, is executed easily on PC clusters. We shows that the convexity is a crucial factor of efficiency of the parallel implementation over the corresponding sequential one.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 50 条
  • [1] A parallel algorithm based on convexity for the computing of Delaunay tessellation
    Phan Thanh An
    Le Hong Trang
    Numerical Algorithms, 2012, 59 : 347 - 357
  • [2] A streaming data Delaunay triangulation algorithm based on parallel computing
    Li, Jian
    Li, Deren
    Shao, Zhenfeng
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2013, 38 (07): : 794 - 798
  • [3] Hierarchical localization algorithm based on inverse Delaunay tessellation
    Saeki, M
    Inoue, J
    Khor, KH
    Kousaka, T
    Honda, H
    Oguni, K
    Hori, M
    WIRELESS SENSOR NETWORKS, PROCEEDINGS, 2006, 3868 : 180 - 195
  • [4] The projector algorithm: A simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs
    Reem, Daniel
    THEORETICAL COMPUTER SCIENCE, 2023, 970
  • [5] COMPUTING THE N-DIMENSIONAL DELAUNAY TESSELLATION WITH APPLICATION TO VORONOI POLYTOPES
    WATSON, DF
    COMPUTER JOURNAL, 1981, 24 (02): : 167 - 172
  • [6] The Multiobjective Delaunay Tessellation Optimization Algorithm and its Applications in Electromagnetics
    Jenkins, Ronald P. y
    Werner, Douglas H.
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 1323 - 1324
  • [7] The β-Delaunay tessellation II: the Gaussian limit tessellation
    Gusakova, Anna
    Kabluchko, Zakhar
    Thale, Christoph
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [8] Cardinality of Simplexes in a Delaunay Tessellation
    Hearne, Leonard B.
    PROCEEDINGS OF THE ITI 2012 34TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES (ITI), 2012, : 201 - 205
  • [9] The Delaunay tessellation in hyperbolic space
    Deblois, Jason
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (01) : 15 - 46
  • [10] ON SORTING TRIANGLES IN A DELAUNAY TESSELLATION
    DEFLORIANI, L
    FALCIDIENO, B
    NAGY, G
    PIENOVI, C
    ALGORITHMICA, 1991, 6 (04) : 522 - 532