A block preconditioning technique for the streamfunction-vorticity formulation of the Navier-Stokes equations
被引:3
|
作者:
Fairag, Faisal A.
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Fairag, Faisal A.
[1
]
Wathen, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Math Inst, Oxford OX1 3LB, EnglandKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Wathen, Andrew J.
[2
]
机构:
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
Iterative methods of Krylov-subspace type can be very effective solvers for matrix systems resulting from partial differential equations if appropriate preconditioning is employed. We describe and test block preconditioners based on a Schur complement approximation which uses a multigrid method for finite element approximations of the linearized incompressible Navier-Stokes equations in streamfunction and vorticity formulation. By using a Picard iteration, we use this technology to solve fully nonlinear Navier-Stokes problems. The solvers which result scale very well with problem parameters. (c) 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011
机构:
Univ Novi Sad, Fac Tech Sci, Dept Civil Engn, Trg Dositeja Obradovica 6, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Tech Sci, Dept Civil Engn, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia