Stochastic Particle Approximations for the Ricci Flow on Surfaces and the Yamabe Flow

被引:1
|
作者
Philipowski, Robert [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
Ricci flow on surfaces; Yamabe flow; Stochastic interacting particle system; POROUS-MEDIUM EQUATION; CONVERGENCE;
D O I
10.1007/s11118-010-9216-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present stochastic particle approximations for the normalized Ricci flow on surfaces and for the non-normalized Yamabe flow on manifolds of arbitrary dimension.
引用
收藏
页码:353 / 371
页数:19
相关论文
共 50 条
  • [1] Stochastic Particle Approximations for the Ricci Flow on Surfaces and the Yamabe Flow
    Robert Philipowski
    Potential Analysis, 2011, 35 : 353 - 371
  • [2] Stochastic Ricci Flow on Compact Surfaces
    Dubedat, Julien
    Shen, Hao
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) : 12253 - 12301
  • [3] A STOCHASTIC TARGET APPROACH TO RICCI FLOW ON SURFACES
    Neel, Robert W.
    Popescu, Ionel
    ANNALS OF PROBABILITY, 2016, 44 (02): : 1341 - 1425
  • [4] Evolution of Yamabe constant under Ricci flow
    Shu-Cheng Chang
    Peng Lu
    Annals of Global Analysis and Geometry, 2007, 31 : 147 - 153
  • [5] Evolution of Yamabe constant under Ricci flow
    Chang, Shu-Cheng
    Lu, Peng
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (02) : 147 - 153
  • [6] Combinatorial Yamabe flow on surfaces
    Luo, F
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (05) : 765 - 780
  • [7] EVOLUTION OF RELATIVE YAMABE CONSTANT UNDER RICCI FLOW
    Botvinnik, Boris
    Lu, Peng
    OSAKA JOURNAL OF MATHEMATICS, 2020, 57 (03) : 679 - 687
  • [8] Evolution of Yamabe constant along the Ricci–Bourguignon flow
    Shahroud Azami
    Abimbola Abolarinwa
    Arabian Journal of Mathematics, 2022, 11 : 459 - 467
  • [9] Ricci flow on Finsler surfaces
    Bidabad, B.
    Sedaghat, M. K.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 : 238 - 254
  • [10] The Ricci flow on surfaces with boundary
    Cortissoz, Jean C.
    Murcia, Alexander
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (02) : 377 - 420