Oscillatory behavior of the second order general noncanonical differential equations

被引:3
|
作者
Baculikova, B. [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math, Letna 9, Kosice 04200, Slovakia
关键词
Second order differential equations; Delay argument; Oscillation; CRITERIA;
D O I
10.1016/j.aml.2020.106224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce new oscillatory criteria for the second order noncanonical differential equation with delay argument r(t)(y'(t))(alpha))' + p(t)y(beta)(tau(t)) = 0. Our oscillatory results essentially extend the earlier ones. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Oscillatory behavior of the second order noncanonical differential equations
    Baculikova, Blanka
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (89) : 1 - 11
  • [2] Oscillatory behavior of the second order noncanonical differential equations
    Dzurina, J.
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 62 - 68
  • [3] Oscillatory behavior of second-order nonlinear noncanonical neutral differential equations
    Grace, Said R.
    Graef, John R.
    Li, Tongxing
    Tunc, Ercan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2023, 15 (02) : 259 - 271
  • [4] OSCILLATORY RESULTS FOR SECOND-ORDER NONCANONICAL DELAY DIFFERENTIAL EQUATIONS
    Dzurina, Jozef
    Jadlovska, Irena
    Stavroulakis, Ioannis P.
    OPUSCULA MATHEMATICA, 2019, 39 (04) : 483 - 495
  • [5] Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior
    Hassan, Ahmed Mohamed
    Ramos, Higinio
    Moaaz, Osama
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [6] Oscillatory behavior of the second order functional differential equations
    Baculikova, B.
    APPLIED MATHEMATICS LETTERS, 2017, 72 : 35 - 41
  • [7] Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case
    Alqahtani, Zuhur
    Qaraad, Belgees
    Almuneef, Areej
    Alharbi, Faizah
    SYMMETRY-BASEL, 2024, 16 (08):
  • [8] Oscillatory Behavior of Second-Order Neutral Differential Equations
    Marianna Ruggieri
    Shyam Sundar Santra
    Andrea Scapellato
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 665 - 675
  • [9] Oscillatory Behavior of Second-Order Neutral Differential Equations
    Ruggieri, Marianna
    Santra, Shyam Sundar
    Scapellato, Andrea
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 665 - 675
  • [10] On the oscillatory behavior of solutions of second order nonlinear differential equations
    Hong, HL
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (1-2): : 55 - 68