Nilpotent orbits in classical Lie algebras over F2n and the Springer correspondence

被引:0
|
作者
Xue, Ting [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1073/pnas.0709626104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We give the number of nilpotent orbits in the Lie algebras of orthogonal groups under the adjoint action of the groups over F-2n. Let G be an adjoint algebraic group of type B, C or D defined over an algebraically closed field of characteristic 2. We construct the Springer correspondence for the nilpotent variety in the Lie algebra of G.
引用
收藏
页码:1126 / 1128
页数:3
相关论文
共 50 条
  • [1] Homotopy type of the nilpotent orbits in classical Lie algebras
    Biswas, Indranil
    Chatterjee, Pralay
    Maity, Chandan
    KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (04) : 851 - 891
  • [2] Combinatorics of the Springer correspondence for classical Lie algebras and their duals in characteristic 2
    Xue, Ting
    ADVANCES IN MATHEMATICS, 2012, 230 (01) : 229 - 262
  • [3] The second cohomology groups of nilpotent orbits in classical Lie algebras
    Biswas, Indranil
    Chatterjee, Pralay
    Maity, Chandan
    KYOTO JOURNAL OF MATHEMATICS, 2020, 60 (02) : 717 - 799
  • [4] CLASSIFICATION OF ADMISSIBLE NILPOTENT ORBITS IN THE CLASSICAL REAL LIE-ALGEBRAS
    OHTA, T
    JOURNAL OF ALGEBRA, 1991, 136 (02) : 290 - 333
  • [5] ON DEGENERACY OF ORBITS OF NILPOTENT LIE ALGEBRAS
    Loboda, A., V
    Kaverina, V. K.
    UFA MATHEMATICAL JOURNAL, 2022, 14 (01): : 53 - 77
  • [6] Nilpotent orbits of certain simple Lie algebras over truncated polynomial rings
    Yao, Yu-Feng
    Shu, Bin
    JOURNAL OF ALGEBRA, 2016, 458 : 1 - 20
  • [7] Singularity of orbits in classical Lie algebras
    Gupta, SK
    Hare, KE
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (04) : 815 - 844
  • [8] Singularity of orbits in classical Lie algebras
    Sanjiv K. Gupta
    Kathryn E. Hare
    Geometric & Functional Analysis GAFA, 2003, 13 : 815 - 844
  • [9] On the second cohomology of nilpotent orbits in exceptional Lie algebras
    Chatterjee, Pralay
    Maity, Chandan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (01): : 10 - 24
  • [10] Nilpotent orbits and mixed gradings of semisimple Lie algebras
    Panyushev, Dmitri, I
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (05): : 1095 - 1114