Glenohumeral joint reconstruction using statistical shape modeling

被引:7
|
作者
Huang, Yichen [1 ]
Robinson, Dale L. [1 ]
Pitocchi, Jonathan [2 ]
Lee, Peter Vee Sin [1 ]
Ackland, David C. [1 ]
机构
[1] Univ Melbourne, Dept Biomed Engn, Parkville, Vic 3010, Australia
[2] Materialise, Heverlee, Belgium
基金
澳大利亚研究理事会;
关键词
Statistical shape model; Shoulder joint; Biomechanical model; Surgical planning; Humerus; Scapula; SHOULDER ARTHROPLASTY; COMPUTED-TOMOGRAPHY; MUSCLE; ANATOMY; SENSITIVITY; LANDMARKS; ACCURACY; SEX;
D O I
10.1007/s10237-021-01533-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Glenohumeral joint reconstruction using statistical shape modeling
    Yichen Huang
    Dale L. Robinson
    Jonathan Pitocchi
    Peter Vee Sin Lee
    David C. Ackland
    [J]. Biomechanics and Modeling in Mechanobiology, 2022, 21 : 249 - 259
  • [2] Morphologic analysis of the subtalar joint using statistical shape modeling
    Krahenbuhl, Nicola
    Lenz, Amy L.
    Lisonbee, Rich J.
    Peterson, Andrew C.
    Atkins, Penny R.
    Hintermann, Beat
    Saltzman, Charles L.
    Anderson, Andrew E.
    Barg, Alexej
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 2020, 38 (12) : 2625 - 2633
  • [3] Thinking outside the glenohumeral box: Hierarchical shape variation of the periarticular anatomy of the scapula using statistical shape modeling
    Jacxsens, Matthijs
    Elhabian, Shireen Y.
    Brady, Sarah E.
    Chalmers, Peter N.
    Mueller, Andreas M.
    Tashjian, Robert Z.
    Henninger, Heath B.
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 2020, 38 (10) : 2272 - 2279
  • [4] Thinking Outside the Glenohumeral Box: Hierarchical Shape Variation of the Periarticular Anatomy of the Scapula Using Statistical Shape Modeling.
    Jacxsens, Matthijs
    Elhabian, Shireen
    Chalmers, Peter
    Tashjian, Robert
    Henninger, Heath
    [J]. SWISS MEDICAL WEEKLY, 2019, 149 : 4S - 4S
  • [5] Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling
    Anton, Fuessinger Marc
    Steffen, Schwarz
    Joerg, Neubauer
    Carl-Peter, Cornelius
    Mathieu, Gass
    Philipp, Poxleitner
    Ruediger, Zimmerer
    Christian, Metzger Marc
    Stefan, Schlager
    [J]. JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2019, 47 (07) : 1054 - 1059
  • [6] Statistical shape modeling of the talocrural joint using a hybrid multi-articulation joint approach
    Lenz, Amy L.
    Krahenbuhl, Nicola
    Peterson, Andrew C.
    Lisonbee, Rich J.
    Hintermann, Beat
    Saltzman, Charles L.
    Barg, Alexej
    Anderson, Andrew E.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Statistical shape modeling of the talocrural joint using a hybrid multi-articulation joint approach
    Amy L. Lenz
    Nicola Krähenbühl
    Andrew C. Peterson
    Rich J. Lisonbee
    Beat Hintermann
    Charles L. Saltzman
    Alexej Barg
    Andrew E. Anderson
    [J]. Scientific Reports, 11
  • [8] Association of Bone Shape and Alignment Analyzed Using Statistical Shape Modeling With Severity of First Metatarsophalangeal Joint Osteoarthritis
    Buldt, Andrew K.
    Gregory, Jenny S.
    Munteanu, Shannon E.
    Allan, Jamie J.
    Tan, Jade M.
    Auhl, Maria
    Landorf, Karl B.
    Roddy, Edward
    Marshall, Michelle
    Menz, Hylton B.
    [J]. ARTHRITIS CARE & RESEARCH, 2024, 76 (03) : 385 - 392
  • [9] FEMORAL TROCHLEA BONE SHAPE POST-ACL RECONSTRUCTION: ANALYSIS USING ULTRASONOGRAPHY AND STATISTICAL SHAPE MODELING
    Parmar, Arjun S.
    Gatti, Anthony A.
    Fajardo, Ryan
    Harkey, Matthew S.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S273 - S273
  • [10] Parametric Shape Modeling of Femurs Using Statistical Shape Analysis
    Choi, Myung Hwan
    Koo, Bon Yeol
    Chae, Je Wook
    Kim, Jay Jung
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2014, 38 (10) : 1139 - 1145