Probabilistic inversion of expert judgments in the quantification of model uncertainty

被引:30
|
作者
Kraan, B
Bedford, T
机构
[1] Delft Univ Technol, Dept Informat Technol & Syst, CROSS, NL-2628 CD Delft, Netherlands
[2] Univ Strathclyde, Strathclyde Business Sch, Dept Management Sci, Glasgow G1 1QE, Lanark, Scotland
关键词
multivariate distribution; uncertainty analysis; expert judgment; probabilistic inversion; relative information; minimum entropy; interior point method; credit scoring; environmental modeling;
D O I
10.1287/mnsc.1050.0370
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Expert judgment is, frequently used to assess parameter values of quantitative management science models, particularly in decision-making contexts. Experts can, however, only be expected to assess observable quantities, not abstract model parameters. This means that we need a method for translating expert assessed uncertainties on model outputs into uncertainties on model parameter values. This process is called probabilistic inversion. The probability distribution on model parameters obtained in this way can be used in a variety of ways, but in particular in an uncertainty analysis or as a Bayes prior. This paper discusses computational algorithms that have proven successful in various projects and gives examples from environmental modelling and banking. Those algorithms are given a theoretical basis by adopting a minimum information approach to modelling, partial information. The role of minimum information is two-fold: It enables us to resolve the problem, of nonuniqueness of distributions given the information we have, and it provides numerical stability to the algorithm by guaranteeing convergence properties.
引用
收藏
页码:995 / 1006
页数:12
相关论文
共 50 条
  • [1] Uncertainty Quantification of Soil Moisture Estimations Based on a Bayesian Probabilistic Inversion
    Ma, Chunfeng
    Li, Xin
    Notarnicola, Claudia
    Wang, Shuguo
    Wang, Weizhen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (06): : 3194 - 3207
  • [2] Efficient inversion and uncertainty quantification of a tephra fallout model
    White, J. T.
    Connor, C. B.
    Connor, L.
    Hasenaka, T.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2017, 122 (01) : 281 - 294
  • [3] Cryptanalysis of an optical cryptosystem with uncertainty quantification in a probabilistic model
    Sun, Xinkai
    Zhang, Sanguo
    Shi, Yishi
    [J]. APPLIED OPTICS, 2022, 61 (19) : 5567 - 5574
  • [4] Uncertainty in Building Inspection and Diagnosis: A Probabilistic Model Quantification
    Pereira, Clara
    Silva, Ana
    Ferreira, Claudia
    de Brito, Jorge
    Flores-Colen, Ines
    Silvestre, Jose D.
    [J]. INFRASTRUCTURES, 2021, 6 (09)
  • [5] Uncertainty quantification in Bayesian inversion
    Stuart, Andrew M.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 1145 - 1162
  • [6] Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction
    Xu, T
    White, L
    Hui, DF
    Luo, YQ
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)
  • [7] Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
    Mondal, Anirban
    Mallick, Bani
    Efendiev, Yalchin
    Datta-Gupta, Akhil
    [J]. TECHNOMETRICS, 2014, 56 (03) : 381 - 392
  • [8] Uncertainty quantification in seismic facies inversion
    Costa E Silva Talarico, Erick
    Grana, Dario
    Passos De Figueiredo, Leandro
    Pesco, Sinesio
    [J]. Geophysics, 2020, 85 (04):
  • [9] Uncertainty quantification in seismic facies inversion
    Costa e Silva Talarico, Erick
    Grana, Dario
    de Figueiredo, Leandro Passos
    Pesco, Sinesio
    [J]. GEOPHYSICS, 2020, 85 (04) : M43 - M56
  • [10] Non-probabilistic credible set model for structural uncertainty quantification
    Yan, Yuhua
    Wang, Xiaojun
    Li, Yunlong
    [J]. STRUCTURES, 2023, 53 : 1408 - 1424