Sensitivity analysis using an imputation method for missing binary data in clinical trials

被引:13
|
作者
Proschan, MA [1 ]
McMahon, RP [1 ]
Shih, JH [1 ]
Hunsberger, SA [1 ]
Geller, NL [1 ]
Knatterud, G [1 ]
Wittes, J [1 ]
机构
[1] NHLBI, Off Biostat Res, Rockledge Ctr 2, Bethesda, MD 20892 USA
关键词
missing data; multiple imputation; hypothesis testing; p-values;
D O I
10.1016/S0378-3758(00)00332-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing data in clinical trials can result in biased treatment effect estimates and tests if the analysis includes only the observed data. Two simple methods of compensating for this potential bias in trials with a binary endpoint were suggested by Wittes et al. (Statist. Med. 8 (1989) 415-425). We study the statistical properties of these procedures and show that they are robust against certain model departures. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 50 条
  • [1] Missing data in clinical trials: control-based mean imputation and sensitivity analysis
    Mehrotra, Devan V.
    Liu, Fang
    Permutt, Thomas
    [J]. PHARMACEUTICAL STATISTICS, 2017, 16 (05) : 378 - 392
  • [2] Sensitivity analysis for clinical trials with missing continuous outcome data using controlled multiple imputation: A practical guide
    Cro, Suzie
    Morris, Tim P.
    Kenward, Michael G.
    Carpenter, James R.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (21) : 2815 - 2842
  • [3] On analysis of longitudinal clinical trials with missing data using reference-based imputation
    Liu, G. Frank
    Pang, Lei
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2016, 26 (05) : 924 - 936
  • [4] Cost-effectiveness analysis of clinical trials with missing data: using multiple imputation to address data missing not at random
    Leurent, Baptiste
    Gomes, Manuel
    Carpenter, James
    [J]. TRIALS, 2017, 18
  • [5] Analysis of Longitudinal Clinical Trials with Missing Data Using Multiple Imputation in Conjunction with Robust Regression
    Mehrotra, Devan V.
    Li, Xiaoming
    Liu, Jiajun
    Lu, Kaifeng
    [J]. BIOMETRICS, 2012, 68 (04) : 1250 - 1259
  • [6] Missing data and sensitivity analysis for binary data with implications for sample size and power of randomized clinical trials
    Cook, Thomas
    Zea, Ryan
    [J]. STATISTICS IN MEDICINE, 2020, 39 (02) : 192 - 204
  • [7] Missing data sensitivity analysis for recurrent event data using controlled imputation
    Keene, Oliver N.
    Roger, James H.
    Hartley, Benjamin F.
    Kenward, Michael G.
    [J]. PHARMACEUTICAL STATISTICS, 2014, 13 (04) : 258 - 264
  • [8] Imputation methods for missing outcome data in meta-analysis of clinical trials
    Higgins, Julian P. T.
    White, Ian R.
    Wood, Angela M.
    [J]. CLINICAL TRIALS, 2008, 5 (03) : 225 - 239
  • [9] Comparison of binary data imputation methods in clinical trials
    An, Koosung
    Kim, Dongjae
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (03) : 539 - 547
  • [10] Missing Data Imputation With Baseline Information in Longitudinal Clinical Trials
    Zhang, Yilong
    Zimmer, Zachary
    Xu, Lei
    Lam, Raymond L. H.
    Huyck, Susan
    Golm, Gregory
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (02): : 242 - 248