The use of nonlinear solitary waves for computing short wave equation pulses

被引:0
|
作者
Steinhoff, J [1 ]
Fan, M [1 ]
Wang, LS [1 ]
Xiao, M [1 ]
机构
[1] Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:782 / 787
页数:6
相关论文
共 50 条
  • [1] Computation of short wave equation pulses using nonlinear solitary waves
    Fan, M
    Wang, LS
    Steinhoff, J
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 5 (04): : 373 - 382
  • [2] Solitary waves for a nonlinear dispersive long wave equation
    Zhengdi Zhang
    Qinsheng Bi
    Acta Mechanica Sinica, 2008, 24 : 455 - 462
  • [3] Solitary waves in the nonlinear wave equation and in gauge theories
    Benci, Vieri
    Fortunato, Donato
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 1 (01) : 61 - 86
  • [4] Solitary waves for a nonlinear dispersive long wave equation
    Z.Zhang Q.Bi Faculty of Science
    Acta Mechanica Sinica, 2008, (04) : 455 - 462
  • [5] Solitary waves for a nonlinear dispersive long wave equation
    Zhang, Zhengdi
    Bi, Qinsheng
    ACTA MECHANICA SINICA, 2008, 24 (04) : 455 - 462
  • [6] Numerical detection and generation of solitary waves for a nonlinear wave equation
    Alonso-Mallo, I.
    Reguera, N.
    WAVE MOTION, 2015, 56 : 137 - 146
  • [7] Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
    Hua, CC
    Liu, YZ
    CHINESE PHYSICS, 2002, 11 (06): : 547 - 552
  • [8] Chirped solitary pulses for a nonic nonlinear Schrodinger equation on a continuous-wave background
    Triki, Houria
    Porsezian, K.
    Choudhuri, Amitava
    Dinda, P. Tchofo
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [9] BIFURCATIONS OF SOLITARY WAVES, PERIODIC PEAKONS AND COMPACTONS OF A COUPLED NONLINEAR WAVE EQUATION
    Zhuang, Jinsen
    Zhou, Yan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (05): : 1997 - 2013
  • [10] Stability of solitary waves of a nonlinear beam equation
    Feng, Wen
    Levandosky, Steven
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 10037 - 10072