The load of kautz networks with shortest paths

被引:0
|
作者
Sun, Li [1 ]
Zhou, Changle [1 ]
Qian, Jianguo [1 ]
机构
[1] Xiamen Univ, Comp & Informat Engn Coll, Xiamen 361005, Fujian Province, Peoples R China
关键词
WDM networks; shortest path routing; network loads;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Under the all-to-all communication mode and shortest path scheme, this note shows that the load of an edge in a Kautz network K(d, k) is upper bounded by 1 + 2d + 3d(2) + - - - + kd(k-1). The sufficient-necessary condition for an edge to reach this bound is also given. This result implies that if d >= 2+root k-1 then the load of the Kautz network equals l(K(d, k)) = 1 + 2d + 3d(2) + - - - + kd(k-1).
引用
收藏
页码:332 / 333
页数:2
相关论文
共 50 条
  • [1] Upgrading Shortest Paths in Networks
    Dilkina, Bistra
    Lai, Katherine J.
    Gomes, Carla P.
    INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING FOR COMBINATORIAL OPTIMIZATION PROBLEMS, 2011, 6697 : 76 - 91
  • [2] Shortest Paths in Multiplex Networks
    Saeed Ghariblou
    Mostafa Salehi
    Matteo Magnani
    Mahdi Jalili
    Scientific Reports, 7
  • [3] Shortest paths in stochastic networks
    Lloyd-Smith, B
    Kist, AA
    Harris, RJ
    Shrestha, N
    2004 12TH IEEE INTERNATIONAL CONFERENCE ON NETWORKS, VOLS 1 AND 2 , PROCEEDINGS: UNITY IN DIVERSITY, 2004, : 492 - 496
  • [4] Shortest Paths in Multiplex Networks
    Ghariblou, Saeed
    Salehi, Mostafa
    Magnani, Matteo
    Jalili, Mahdi
    SCIENTIFIC REPORTS, 2017, 7
  • [5] ENCODING SHORTEST PATHS IN SPATIAL NETWORKS
    ERWIG, M
    NETWORKS, 1995, 26 (04) : 291 - 303
  • [6] Constrained shortest paths in wireless networks
    Li, XY
    Wang, PJ
    Wang, Y
    Frieder, O
    2001 MILCOM, VOLS 1 AND 2, PROCEEDINGS: COMMUNICATIONS FOR NETWORK-CENTRIC OPERATIONS: CREATING THE INFORMATION FORCE, 2001, : 884 - 893
  • [7] Shortest Paths and Centrality in Uncertain Networks
    Saha, Arkaprava
    Brokkelkamp, Ruben
    Velaj, Yllka
    Khan, Arijit
    Bonchi, Francesco
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (07): : 1188 - 1201
  • [8] On the Utilization of Shortest Paths in Complex Networks
    Alrasheed, Hend
    IEEE ACCESS, 2021, 9 : 110989 - 111004
  • [9] SHORTEST PATHS IN NETWORKS WITH VECTOR WEIGHTS
    CORLEY, HW
    MOON, ID
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (01) : 79 - 86
  • [10] Shortest paths between shortest paths
    Kaminski, Marcin
    Medvedev, Paul
    Milanic, Martin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5205 - 5210