Regularity theory for the uniformly elliptic operators in Orlicz spaces

被引:3
|
作者
Yao, Fengping [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Uniformly elliptic operator; Schrodinger operator; Regularity; Orlicz spaces; SCHRODINGER-OPERATORS; EQUATIONS;
D O I
10.1016/j.camwa.2010.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the regularity theory in Orlicz spaces for the uniformly elliptic operators L = -Sigma(n)(i,j=1) partial derivative(i)(a(ij)(x)partial derivative(j))+V(x) with non-negative potentials V(x) on R(n) (n >= 3) which belongs to a certain reverse Holder class. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3098 / 3104
页数:7
相关论文
共 50 条
  • [1] The Regularity Problem for Uniformly Elliptic Operators in Weighted Spaces
    Chen, Li
    Maria Martell, Jose
    Prisuelos-Arribas, Cruz
    [J]. POTENTIAL ANALYSIS, 2023, 58 (03) : 409 - 439
  • [2] The Regularity Problem for Uniformly Elliptic Operators in Weighted Spaces
    Li Chen
    José María Martell
    Cruz Prisuelos-Arribas
    [J]. Potential Analysis, 2023, 58 : 409 - 439
  • [3] Regularity theory in Orlicz spaces for elliptic equations in Reifenberg domains
    Jia, Huilian
    Li, Dongsheng
    Wanga, Lihe
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 804 - 817
  • [4] Regularity in Orlicz spaces for nondivergence elliptic operators with potentials satisfying a reverse Holder condition
    Zhang, Kelei
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (78) : 1 - 16
  • [5] Existence and regularity results for nonlinear elliptic equations in Orlicz spaces
    Barletta, Giuseppina
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [6] Existence and regularity results for nonlinear elliptic equations in Orlicz spaces
    Giuseppina Barletta
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [7] A Regularity Theory for Random Elliptic Operators
    Gloria, Antoine
    Neukamm, Stefan
    Otto, Felix
    [J]. MILAN JOURNAL OF MATHEMATICS, 2020, 88 (01) : 99 - 170
  • [8] A Regularity Theory for Random Elliptic Operators
    Antoine Gloria
    Stefan Neukamm
    Felix Otto
    [J]. Milan Journal of Mathematics, 2020, 88 : 99 - 170
  • [9] A regularity result for a class of non-uniformly elliptic operators
    Fausto Ferrari
    Giulio Galise
    [J]. Archiv der Mathematik, 2022, 118 : 539 - 548
  • [10] A regularity result for a class of non-uniformly elliptic operators
    Ferrari, Fausto
    Galise, Giulio
    [J]. ARCHIV DER MATHEMATIK, 2022, 118 (05) : 539 - 548